Renormalization group maps for Ising models and tensor networks

Tom Kennedy

University of Arizona

Webinar "Analysis, Quantum Fields, and Probability" December 9, 2021

Outline

Joint work with Slava Rychkov

- Wilson-Kadanoff RG (real-space RG)
- Tensor networks
- Simple RG map for tensor network
- High temperature fixed point stable?
- Problem : eigenvalue=1 CDL problem
- Better RG disentangler
- Stability of high temp fixed point
- Outlook

arXiv:2107.11464

Ask questions.

Wilson-Kadanoff RG (real space RG)

Ising type models: spins take on only values ± 1 . Nearest neighbor interaction

$$H(\sigma) = -\beta \sum_{\langle i,j \rangle} \sigma_i \sigma_j$$

More general interaction

$$H(\sigma) = \sum_{Y} d(Y) \sigma(Y), \qquad \sigma(Y) = \prod_{i \in Y} \sigma_i$$

where the sum is over all finite subsets including the empty set.

Note that β has been absorbed into the Hamiltonian.

Blocking

Lattice divided into blocks; each block assigned a block spin variable.

Block spins also take on only the values $\pm 1.$

Wilson Kadanoff RG

Original spins: σ Block spins: $\overline{\sigma}$

RG Kernel: $T(\overline{\sigma}, \sigma)$, e.g., majority rule

Satisfies

$$\sum_{\overline{\sigma}} T(\overline{\sigma}, \sigma) = 1, \quad \forall \sigma$$

for all original spin configurations σ .

Renormalized Hamiltonian $\bar{H}(\overline{\sigma})$ is formally defined by

$$e^{-\bar{H}(\overline{\sigma})} = \sum_{\sigma} T(\overline{\sigma}, \sigma) e^{-H(\sigma)}$$

Note: β has been absorbed into the Hamiltonians.

Key point: only makes sense in finite volume.

RG maps preserves Z

$$\sum_{\overline{\sigma}} \ T(\overline{\sigma}, \sigma) = 1 \quad \forall \sigma, \qquad \qquad e^{-\bar{H}(\overline{\sigma})} = \sum_{\sigma} \ T(\overline{\sigma}, \sigma) \, e^{-H(\sigma)}$$

$$\sum_{\overline{\sigma}} e^{-\overline{H}(\overline{\sigma})} = \sum_{\sigma} e^{-H(\sigma)}$$

So free energy of the original model can be recovered from the renormalized Hamiltonian.

Study the critical behavior of the system by studying iterations of the renormalization group map:

$$\mathcal{R}(H) = \bar{H}$$

Remember: R is not even defined from a rigorous point of view.

RG flow

Has a fixed point with stable manifold of co-dim 2 Eigenvalues of linearization $> 1 \implies$ critical exponents

Rigorous results

Existence of map at high temp or large magnetic field Griffiths and Pearce; Israel; Kashapov; Yin Non-existence of map at low temp for various kernels Griffiths and Pearce; Israel; van Enter, Fernández and Sokal Non-existence of map near critical temp for some kernels

Essentially no results even for first iteration of the map near critical surface.

Goal: Not to determine for each T whether it works or not. Show there is one T that works.

Numerical studies

Wilson (Rev. Mod. Phys. 1975) - 217 terms in *H*! "A number of details are omitted."

Lots of Monte Carlo studies using Wilson-Kadanoff RG

Swendsen: compute the linearization of the RG map from correlation functions. Avoids computing \mathcal{R} itself.

Brandt,Ron,Swendsen Saw significant dependence of \bar{H} on truncation method.

"Even though the individual multispin interactions usually have smaller coupling constants than two-spin interactions, the fact that they are very numerous can lead to multispin interactions dominating the effects of two-spin interactions."

Lattice gas variables

RG calculations usually done using the spin variables $\sigma_i=\pm 1$. lattice gas variables: $n_i=(1-\sigma_i)/2$ which take on the values 0,1. In lattice gas variables

$$ar{H}(ar{n}) = \sum_{Y} c(Y) \, ar{n}(Y), \qquad ar{n}(Y) = \prod_{i \in Y} ar{n}_i$$

Y summed over all finite subsets of block spins Take H to be n.n. critical Ising You can compute the c(Y) very accurately. Compute them for about $10,000\ Y's$. Order by decreasing |c(Y)| and plot. arXiv:0905.2601

Decay of lattice gas coefs

Bottom curve: $|c(Y_n)|$ vs. n. Top curve: $\sum_{i=n}^{N} |c(Y_n)|$ vs. n.

Two lines : $c2^{-n/850}$

Open problems

- 1. Prove there is a Banach space of Hamiltonians and a rigorously defined RG map on it which has a non-trival fixed point with a stable manifold of co-dimension two.
- 2. Develop a systematic numerical approach to compute the RG map.

Tensor network

Let H be a real Hilbert space (finite or infinite dimensional) A tensor (of order 4) is a map

$$A: H \times H \times H \times H \rightarrow \mathbb{R}$$

which is linear in each argument. Let e_i be o.n. basis for H.

$$A_{ijkl} = A(e_i, e_j, e_k, e_l)$$

Tensor network is formed by contracting copies of *A*:

Ising model as tensor network - cond matter

Gauge transformations

Let G_h be invertible 2-leg tensor (matrix). Define \tilde{A} by

Contraction of \tilde{A} network is same as contraction of A network.

Simplest RG for tensor network

Levin, Nave (2007)

J is isometry of $H \otimes H$ onto H.

Simplest RG for tensor network

J is isometry of $H\otimes H$ onto H. Many such isometries. This freedom is equivalent to a gauge transformation.

Wilson-Kadanoff vs tensor network RG

- ► Growth of number of variables

 WK RG: Spins only have two values but Hamiltonian becomes non-local with many multi-body terms

 TN RG: Tensor stays local, but leg dimension grows
- ➤ Computability of RG map WK RG: no explict way to compute it - ∞ volume limit TN RG: Explicitly computable, but disentanglers complicate it

High temperature fixed point

Let A^{HT} be tensor with one nonzero component $A^{HT}_{0000}=1$.

Assume $J(e_0 \otimes e_0) = e_0$. Then A^{HT} is a fixed point of RG.

Is it stable?

Norms

Use Hilbert-Schmidt (Frobenius) norm:

$$||A||^2 = \sum_{ijkl} A_{ijkl}^2$$

If A, B are tensors of any order and C is formed by contracting some indices of A with some indices of B, then by Cauchy-Schwaz inequality $||C|| \le ||A|| ||B||$.

$$||T|| \le ||A||^4$$

CDL Problem (Corner double line)

Now perturb A^{HT} : $A = A^{HT} + \delta A$, $||\delta A|| = O(\epsilon)$. Compute A' to first order:

Disentanglers

0: leg fixed to 0 index, x: leg can only be nonzero index subtensor

Disentanglers - cont

Stability of high temp fixed point

Theorem:

There is a tensor RG map such that if $A=A^{HT}+\delta A$ with $||\delta A||$ small, then the image has the form $A'=A^{HT}+\delta A'$ with

$$||\delta A'|| \le C||\delta A||^{3/2}$$

(The tensor A is normalized so that $A_{0000} = 1$ and the RG map includes a normalization step so that $A'_{0000} = 1$.)

Recall the disentangler:

This reduces the proof to proving the existence of the disentangler.

NB: We will cheat a bit in the following - more on this later

$$M = \sum_{i \neq 0, j \neq 0} m_{ij} \mid_{0}^{0} \rangle \langle_{j}^{i} \mid$$

$$U = \exp(-M + M^{T})$$

Note $||M|| = O(\epsilon^2)$.

$$U = I - M + M^T + O(\epsilon^4)$$

Compute to order $O(\epsilon^2)$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A = A + (-M + M^T) + O(\epsilon^3)$$

$$A =$$

Sketch of the proof - the cheat

Outlook

Presented a modest first step in rigorous study of tensor RG maps without truncation.

Holy grail : prove there is a RG map for tensor networks with a non-trivial fixed point.

There are many tensor RG maps that have been studied numerically. Which one is best for above?