Renormalization group maps for Ising models and tensor networks

Tom Kennedy
University of Arizona

Webinar "Analysis, Quantum Fields, and Probability"
December 9, 2021

Outline

Joint work with Slava Rychkov

- Wilson-Kadanoff RG (real-space RG)
- Tensor networks
- Simple RG map for tensor network
- High temperature fixed point - stable?
- Problem : eigenvalue=1-CDL problem
- Better RG - disentangler
- Stability of high temp fixed point
- Outlook
arXiv:2107.11464
Ask questions.

Wilson-Kadanoff RG (real space RG)

Ising type models: spins take on only values ± 1.
Nearest neighbor interaction

$$
H(\sigma)=-\beta \sum_{<i, j>} \sigma_{i} \sigma_{j}
$$

More general interaction

$$
H(\sigma)=\sum_{Y} d(Y) \sigma(Y), \quad \sigma(Y)=\prod_{i \in Y} \sigma_{i}
$$

where the sum is over all finite subsets including the empty set.
Note that β has been absorbed into the Hamiltonian.

Blocking

Lattice divided into blocks; each block assigned a block spin variable.
Block spins also take on only the values ± 1.

Wilson Kadanoff RG

Original spins: $\sigma \quad$ Block spins: $\bar{\sigma}$
RG Kernel: $T(\bar{\sigma}, \sigma)$, e.g., majority rule
Satisfies

$$
\sum_{\bar{\sigma}} T(\bar{\sigma}, \sigma)=1, \quad \forall \sigma
$$

for all original spin configurations σ.
Renormalized Hamiltonian $\bar{H}(\bar{\sigma})$ is formally defined by

$$
e^{-\bar{H}(\bar{\sigma})}=\sum_{\sigma} T(\bar{\sigma}, \sigma) e^{-H(\sigma)}
$$

Note: β has been absorbed into the Hamiltonians.
Key point: only makes sense in finite volume.

RG maps preserves Z

$$
\begin{array}{cl}
\sum_{\bar{\sigma}} T(\bar{\sigma}, \sigma)=1 & \forall \sigma, \quad e^{-\bar{H}(\bar{\sigma})}=\sum_{\sigma} T(\bar{\sigma}, \sigma) e^{-H(\sigma)} \\
& \sum_{\bar{\sigma}} e^{-\bar{H}(\bar{\sigma})}=\sum_{\sigma} e^{-H(\sigma)}
\end{array}
$$

So free energy of the original model can be recovered from the renormalized Hamiltonian.
Study the critical behavior of the system by studying iterations of the renormalization group map:

$$
\mathcal{R}(H)=\bar{H}
$$

Remember: \mathcal{R} is not even defined from a rigorous point of view.

RG flow

Has a fixed point with stable manifold of co-dim 2
Eigenvalues of linearization $>1 \Longrightarrow$ critical exponents

nearest
neighbor
C nearest neighbor

Rigorous results

Existence of map at high temp or large magnetic field Griffiths and Pearce; Israel; Kashapov; Yin
Non-existence of map at low temp for various kernels Griffiths and Pearce; Israel; van Enter, Fernández and Sokal Non-existence of map near critical temp for some kernels

Essentially no results even for first iteration of the map near critical surface.

Goal: Not to determine for each T whether it works or not. Show there is one T that works.

Numerical studies

Wilson (Rev. Mod. Phys. 1975) - 217 terms in H !
"A number of details are omitted."
Lots of Monte Carlo studies using Wilson-Kadanoff RG
Swendsen: compute the linearization of the RG map from correlation functions. Avoids computing \mathcal{R} itself.

Brandt,Ron,Swendsen Saw significant dependence of \bar{H} on truncation method.
"Even though the individual multispin interactions usually have smaller coupling constants than two-spin interactions, the fact that they are very numerous can lead to multispin interactions dominating the effects of two-spin interactions."

Lattice gas variables

RG calculations usually done using the spin variables $\sigma_{i}= \pm 1$.
lattice gas variables: $n_{i}=\left(1-\sigma_{i}\right) / 2$ which take on the values 0,1 . In lattice gas variables

$$
\bar{H}(\bar{n})=\sum_{Y} c(Y) \bar{n}(Y), \quad \bar{n}(Y)=\prod_{i \in Y} \bar{n}_{i}
$$

Y summed over all finite subsets of block spins
Take H to be n.n. critical Ising
You can compute the $c(Y)$ very accurately.
Compute them for about 10, $000 Y^{\prime}$ s.
Order by decreasing $|c(Y)|$ and plot.
arXiv:0905.2601

Decay of lattice gas coefs

Bottom curve: $\left|c\left(Y_{n}\right)\right|$ vs. n. Top curve: $\sum_{i=n}^{N}\left|c\left(Y_{n}\right)\right|$ vs. n.
Two lines: $c 2^{-n / 850}$

Open problems

1. Prove there is a Banach space of Hamiltonians and a rigorously defined RG map on it which has a non-trival fixed point with a stable manifold of co-dimension two.
2. Develop a systematic numerical approach to compute the RG map.

Tensor network

Let H be a real Hilbert space (finite or infinite dimensional) A tensor (of order 4) is a map

$$
A: H \times H \times H \times H \rightarrow \mathbb{R}
$$

which is linear in each argument. Let e_{i} be o.n. basis for H.

$$
A_{i j k l}=A\left(e_{i}, e_{j}, e_{k}, e_{l}\right)
$$

Tensor network is formed by contracting copies of A :

Ising model as tensor network - cond matter

Gauge transformations

Let G_{h} be invertible 2-leg tensor (matrix). Define \tilde{A} by

Contraction of \tilde{A} network is same as contraction of A network.

Simplest RG for tensor network

Levin,Nave (2007)

J is isometry of $H \otimes H$ onto H.

Simplest RG for tensor network

J is isometry of $H \otimes H$ onto H. Many such isometries. This freedom is equivalent to a gauge transformation.

Wilson-Kadanoff vs tensor network RG

- Growth of number of variables

WK RG: Spins only have two values but Hamiltonian becomes non-local with many multi-body terms
TN RG: Tensor stays local, but leg dimension grows

- Computability of RG map

WK RG: no explict way to compute it $-\infty$ volume limit
TN RG: Explicitly computable, but disentanglers complicate it

High temperature fixed point

Let $A^{H T}$ be tensor with one nonzero component $A_{0000}^{H T}=1$.
Assume $J\left(e_{0} \otimes e_{0}\right)=e_{0}$. Then $A^{H T}$ is a fixed point of RG.

Apply R4 map:

$\rightarrow 0=A+T$

Is it stable?

Norms

Use Hilbert-Schmidt (Frobenius) norm:

$$
\|A\|^{2}=\sum_{i j k l} A_{i j k l}^{2}
$$

If A, B are tensors of any order and C is formed by contracting some indices of A with some indices of B, then by Cauchy-Schwaz inequality $\|C\| \leq\|A|\|\mid B\|$.

$$
\|T\| \leq\|A\|^{4}
$$

CDL Problem (Corner double line)
Now perturb $A^{H T}: A=A^{H T}+\delta A,\|\delta A\|=O(\epsilon)$.
Compute A^{\prime} to first order:

$$
\begin{aligned}
& A=\prod_{H T}^{1}+\frac{\phi}{O(\sigma)} \quad \text { Apply Rh map: } \\
& A^{\prime}=\hat{d}+\frac{d}{d}+3 \text { rotation }+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Disentangles

$$
0-\frac{1_{x}^{0}}{B_{1}}-x, \frac{1^{0}}{B_{2}}-0, \cdots=O\left(\varepsilon^{2}\right)
$$

0 : leg fixed to 0 index, x : leg can only be nonzero index subtensor

Disentanglers - cont

Stability of high temp fixed point

Theorem:

There is a tensor RG map such that if $A=A^{H T}+\delta A$ with $\|\delta A\|$ small, then the image has the form $A^{\prime}=A^{H T}+\delta A^{\prime}$ with

$$
\left\|\delta A^{\prime}\right\| \leq C\|\delta A\|^{3 / 2}
$$

(The tensor A is normalized so that $A_{0000}=1$ and the RG map includes a normalization step so that $A_{0000}^{\prime}=1$.)

Sketch of the proof - 1

Recall the disentangler :

This reduces the proof to proving the existence of the disentangler. NB: We will cheat a bit in the following - more on this later

Sketch of the proof - 2

Sketch of the proof -3

Sketch of the proof -4

$$
\begin{aligned}
M & =\sum_{i \neq 0, j \neq 0} m_{i j}\left|\begin{array}{l}
0 \\
0
\end{array}\right\rangle\left\langle\begin{array}{l}
i \\
j
\end{array}\right| \\
U & =\exp \left(-M+M^{T}\right)
\end{aligned}
$$

Note $\|M\|=O\left(\epsilon^{2}\right)$.

$$
U=I-M+M^{T}+O\left(\epsilon^{4}\right)
$$

Sketch of the proof -5
Compute to order $O\left(\epsilon^{2}\right)$

Sketch of the proof - 6

$$
\begin{aligned}
& =-\frac{1}{-b_{1}-}-\left(\varepsilon^{3}\right) \left\lvert\,-\frac{1}{b_{1}}-\frac{1}{1}+\frac{\phi}{0}\right.
\end{aligned}
$$

Sketch of the proof - the cheat

not cancelled
not $O\left(\varepsilon^{3}\right)$

Outlook

Presented a modest first step in rigorous study of tensor RG maps without truncation.

Holy grail : prove there is a RG map for tensor networks with a non-trivial fixed point.

There are many tensor RG maps that have been studied numerically. Which one is best for above?

