
June 1, 2008. This is very preliminary version of these notes. In particular the
references are grossly incomplete. You should check my website to see if a newer
version of the notes is available.

1 Introduction

These notes are about how to do various simulations that are related to the Schramm-Loewner
Evolution (SLE) in some way. They are meant to be pedagogic in nature. Some of the algo-
rithms we discuss are well know and so our discussion of them will be brief, referring the reader
to various articles for more detail. For some of the algorithms that are not as well known, our
discussion will be more detailed. Our goal is to provide the reader with a “how-to” guide that
will enable him or her to do “state of the art” simulations related to SLE.

We begin with simulating SLE itself. Then we consider what might be called the inverse
problem. Given a model of random curves, compute the Loewner driving process that describes
them to see if the model is SLE. Then we turn our attention to various lattice models that
are believed or proven to be described by SLE when they are at their critical point in two
dimensions.

2 Simulations involving conformal maps

2.1 Lowener equation crash course

Let H denote the upper half of the complex plane,

H = {z : Im(z) > 0} (1)

If γ is a curve in H that starts at 0 and is simple (does not intersect itself), then H \ γ[0, t] is
a simply connected domain. So there is a conformal map gt from it onto H. Thus such simple
curves may be described by one parameter families of conformal maps. We start with a brief
review of Loewner’s equation for gt and some of its properties. For a more detailed review from
a physics point of view we refer the reader to [3, 9, 19]. For a full mathematical treatment we
refer the reader to [14].

2.1.1 Loewner equation as correspondence between curves and driving functions

The Loewner equation provides a means for encoding curves in the upper half plane that do not
intersect themselves by a real-valued function. Let γ(t) be such a simple curve with 0 ≤ t < ∞.
Let γ[0, t] denote the image of γ up to time t. Then H \ γ[0, t] is a simply connected domain.
So there is a conformal map gt from this domain to H. This map is not unique. We choose the

1

map that satisfies

gt(z) = z +
C(t)

z
+ O(

1

|z|2), z → ∞ (2)

The coefficient C(t) is increasing in t, and we can parameterize the curve so that C(t) = 2t.
Then gt satisfies the differential equation

∂gt(z)

∂t
=

2

gt(z) − Ut

, g0(z) = z (3)

for some real valued function Ut on [0,∞). The function Ut is often called the driving function.
If our simple curve in the half plane is random, then the driving function Ut is a stochastic

process. Schramm discovered that if the scaling limit of a two-dimensional model is conformally
invariant and satisfies a certain Markov property, then this stochastic driving process must be
a Brownian motion with mean zero [21]. The only thing that is not determined is the variance.
Schramm named this process stochastic Loewner evolution or SLE; it is now often referred to
as Schramm-Loewner evolution.

The solution to (3) need not exist for all times t since the denominator can go to zero. We
let Kt be the set of points z in H for which the solution to this equation no longer exists at
time t. If the driving function Ut is sufficiently nice, this set will be a curve Kt = γ[0, t]. But
even for a continuous Ut it need not be [31]. In particular, when Ut is a Brownian motion,
Kt may not be a curve. Even in the cases where Ut is not sufficiently nice, in our simulations
our approximation to Ut will be nice enough that it produces a curve. So in the following we
will always take Kt to be a curve, but the reader should keep in mind that in some cases this
curve is approximating a more complicated set, more precisely it is approximating a curve that
generates a more complicated set. ??

2.1.2 Breaking Loewner equation up into sequence of compositions

Let t, s > 0. The map gt+s maps H \ γ[0, t + s] onto H. We can do this in two stages. We first
apply the map gs. This maps H\γ[0, s] onto H, and it maps H\γ[0, t+s] onto H\gs(γ[s, t+s]).
Let ḡt be the conformal map that maps H \ gs(γ[s, t + s]) onto H with the usual hydrodynamic
normalization. By the uniqueness of these maps,

gs+t = ḡt ◦ gs, i.e., ḡt = gs+t ◦ g−1
s (4)

Then
d

dt
ḡt(z) =

d

dt
gs+t ◦ g−1

s (z) =
2

gs+t ◦ g−1
s (z) − Us+t

=
2

ḡt(z) − Us+t

(5)

Note that ḡ0(z) = z. Thus ḡt(z) is obtained by solving the Loewner equation with driving
function Ūt = Us+t. This driving function starts at Us, and so the γ(t) associated with ḡt starts
growing at Us.

2

We now introduce a partition of the time interval [0,∞): 0 = t0 < t1 < t2 < · · · tn < · · ·,
and define

ḡk = gtk ◦ g−1
tk−1

(6)

So
gtk = ḡk ◦ ḡk−1 ◦ ḡk−2 ◦ · · · · · · ḡ2 ◦ ḡ1 (7)

By the remarks above, ḡk(z) is obtained by solving the Loewner equation with driving function
Utk−1+t for t = 0 to t = ∆k, where ∆k = tk − tk−1. Note that ḡk maps H minus a “cut” starting
at Utk−1

to H. If we consider

gk(z) = ḡk(z + Utk−1
) − Utk−1

, (8)

it is obtained by solving the Loewner equation with driving function Utk−1+t − Utk−1
for t = 0

to t = ∆k. This driving function starts at 0 and ends at δk where δk = Utk − Utk−1
. So this

conformal map takes H minus a cut starting at the origin onto H. The inverse of this map,

g−1
k (z) = ḡ−1

k (z + Utk−1
) − Utk−1

, (9)

takes H and introduces a cut which begins at the origin.
There are two general types of simulations we would like to do. Given a a driving function

we want to find the curve it generates. And given a curve we want to find the corresponding
driving function. For both problems the key idea is the same. We approximate the driving
function on the interval [tk−1, tk] by a function for which the Loewner equation may be explicitly
solved. So the maps ḡk and gk can be found explicitly. Eq. (7) can then be used to approximate
gt. In the next section we consider some driving functions for which the Loewner equation can
be explicitly solved.

2.1.3 Some explicitly solvable cases of Loewner eq.

One of the simplest explicit solutions of the Loewner equation is what we will refer to as “tilted
slits.” For xl, xr > 0 and 0 < α < 1, define

f(z) = (z + xl)
1−α(z − xr)

α,

Then f maps H to H \ Γ where Γ is a line segment from 0 to a point reiαπ. There are two
degrees of freedom for the line segment - its length r and α. This map sends [−xl, xr] onto
Γ. Unfortunately, its inverse cannot be explicitly computed. For the inverse to satisfy the
normalization (2), we must have (1 − α)xl = αxr. Straightforward calculation shows if we let

ft(z) =

(

z + 2
√

t

√

α

1 − α

)1−α
(

z − 2
√

t

√

1 − α

α

)α

3

then it produces a slit with capacity 2t. We know from the general theory that gt = f−1
t satisfies

the Loewner equation (3) for some driving function Ut. Some calculation then shows that

Ut = cα

√
t (10)

where

cα = 2
1 − 2α

√

α(1 − α)
(11)

The change in the driving function over the time interval [0, ∆] is

δ = cα

√
∆ (12)

The original map φ had three real degrees of freedom, α, x, y. The normalization (2) reduces
this to two real degrees of freedom, α and t. So if are given δ and ∆, then the map is completely
determined.

An even simpler solution of the Loewner equation is “vertical slits.” Let

gt(z) =
√

(z − δ)2 + 4t + δ

Then it is easy to see that gt satisfies Lowener’s equation with a constant diving function, Ut = δ.
Since the driving function does not start at 0, the curve will not start at the origin. The curve
is just a vertical slit from δ to δ + 2i

√
t. Using vertical slits means that we approximate the

driving function by a discontinuous piecewise constant function. This will produce a Kt which
is not a curve.

2.2 Simulating SLE, more generally driving function ⇒ curve

2.2.1 The zipping algorithm

Our primary motivation is to simulate SLE, i.e., to compute the curve when the driving function
is Brownian motion. But the following discussion applies to any Ut.

One method for simulating SLE is to numerically solve the Loewner equation for many
initial conditions and see which initial conditions are in Kt and which are not. See Vincent
Beffara’s web page for more on this.

Let 0 = t0 < t1 < t2 < · · · < tn be a partition of the time interval [0, t]. The approximation
to the SLE trace is given by γ(t) = g−1

t (Ut). Let zk = g−1
tk

(Utk). We will only consider the
points on this curve which correspond to times t = tk. One could consider other points on
the curve, but the distance between consecutive zk is already of the order of the error in our
approximation, so there is little reason to consider more points. The points zk are given by

zk = ḡ−1
1 ◦ ḡ−1

2 ◦ · · · · · · ḡ−1
k−1 ◦ ḡ−1

k (Utk) (13)

4

Recall that if we solve the Loewner equation with driving function Utk−1+t − Utk−1
for t = 0 to

t = ∆k, we get gk(z) where
gk(z) = ḡk(z + Utk−1

) − Utk−1
(14)

Define
hk(z) = ḡk(z) − δk = ḡ(z + Utk−1

) − Utk (15)

where δk = Utk − Utk−1
. Then

hk ◦ hk−1 ◦ · · · · · · ◦ h1(zk) = ḡk ◦ ḡk−1 ◦ · · · · · · ◦ ḡ1(zk) − Utk = 0. (16)

Let
fk = h−1

k (17)

So
zk = f1 ◦ f2 ◦ · · · ◦ fk(0) (18)

As noted before, gk maps H minus a small curve onto H. The driving function ends at δk,
so gk sends the tip of the curve to δk. It follows that hk(z) = gk(z) − δk maps H minus the
small curve onto H and sends the tip to the origin. So fk = h−1

k maps H onto H minus the
small curve and sends the origin to the tip of the curve.

Thus we have the following simple picture for eq. (18). The first map fk welds together
a small interval on the real axis containing the origin to produce a small cut. The origin is
mapped to the tip of this cut. The second map fk−1 welds together a (possibly different) small
interval in such a way that it produces another small cut. The original cut is moved away from
the origin with its base being at the tip of the new cut. This process continues. Each map
introduces a new small cut whose tip is attached to the image of the base of the previous cut.

As discussed before, we define Ut on each time interval tk−1 ≤ t ≤ tk so that gk(z) may be
explicitly computed. There are two constraints on gk. The curve must have capacity 2∆k and
gk must map the tip of the curve to δk. Given any simple curve satisfying these two constraints
and starting at the origin, it will be the solution of the Loewner equation for some driving
function which goes from 0 to δk over the time interval [0, ∆k]. Hence (18) gives points on
a curve that approximates the curve corresponding to the exact driving function. Different
choices of how we define Ut on each time interval give us different discretizations. As we will
see, this choice will not have a significant effect. Of much greater importance is how we choose
the ∆k and δk.

If we want to simulate SLE, the δk should be chosen so that the stochastic process Ut

will converge to
√

κ times Brownian motion as N → ∞. One possibility is take the δk to be
independent normal random variables with mean zero and variance κ∆k. If we do this, then
Ut and

√
κBt will have the same distributions if we only consider times chosen from the tk.

Another possibility is to take the δk to be independent random variables with δk = ±
√

κ∆k

where the choices of + and − are equally probable. If we use this choice with the uniform
partition of the time interval, then we are approximating the Brownian motion by a simple
random walk.

5

The simplest choice for ∆k is to use a uniform partition of the time interval. For values of
κ which are not too large this works reasonbly well. Figure 1 shows a simulation with κ = 8/3
with 10, 000 equally spaced time intervals.

However, for larger values of κ, uniform ∆k are a disaster. Figure 2 shows a simulation with
κ = 6 and 10, 000 equally spaced time intervals. Clearly something has gone wrong. To see just
how badly wrong things have gone the reader should compare this figure with figure 3 which
used the same sample of Brownian motion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1: SLE with κ = 8/3 with fixed ∆t. There are 10, 000 points.

To understand the effect seen in (2) we give another equivalent definition of the (half plane)
capacity C of a set A. Before we defined it by

g(z) = z +
C

z
+ O(

1

z2
)

where g maps H \ A onto H, usual normalizations. A more intuitive definition is

C = lim
y→∞

y Eiy[Im(Bτ)]

where Bt is two-dimensional Brownian motion started at iy. The stopping time τ is the first
time the Brownian motion hits A or R. From the point of view of the Brownian motion, parts
of the curve can be well hidden by earlier parts of the curve and so have very little capacity.
So what looks like a “long” section of the curve has very little capacity and so gets very few
points approximating it.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-1 -0.5 0 0.5 1

Figure 2: SLE with κ = 6 with fixed ∆t. There are 10, 000 points.

2.2.2 Adaptive ∆k

To do better we will choose use non-uniform ∆k. In fact they will depend on the sample of the
Brownian motion and so we refer to this method as “adaptive ∆k.” I learned this idea from
Stephen Rhöde [32].

Fix a spatial scale ǫ > 0. We start with uniform partition of the time and compute the
points zk along the curve. Look for points zk such that |zk − zk−1| ≥ ǫ. For these time intervals
[tk−1, tk], divide the interval into two equal intervals. We then sample the Brownian motion
at midpoint of [tk−1, tk] using a Brownian bridge. Then we compute new the new points zk.
(There will of course be more of them than before.) We repeat this until we have |zk−zk−1| ≤ ǫ
for all k.

MORE: Explain Brownian bridge.

2.2.3 Effect of the choice of the cut

In this section we compare the curves we get using tilted slits for the elementary maps with the
curves we get using vertical slits. To do this we carry out the adaptive simulation described in
the previous section using tilted slits. We then use the same ∆k and δk, i.e., the same partition
of the time interval and the same sample of Brownian motion, but with vertical slits. For
κ = 8/3, figure 2.2.3 shows the tilted slits curve vs. the vertical slits curve. There are about

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-1 -0.5 0 0.5 1

Figure 3: SLE with κ = 6 with adaptive ∆t. There are 35, 000 points.

35, 000 points on the curves. The vertical slits do not produce a curve. What we have plotted
is the following. We compute the points zk and then simply connected them with a straight
line. 2.2.3 shows an enlargment of part of the figure.

In the first figure it is almost impossible to distinguish the two curves. Even in the enlarge-
ment the difference is quite small. Figures 2.2.3 and 2.2.3 show the same thing with κ = 6. In
the enlargement one can see deviations between the two curves. The size of the deviations is
roughly on the same scale as the distance between adjacent points on the curve.

2.3 Inverse SLE: curve ⇒ driving function

We now consider what one might call the inverse problem. Given a simple curve γ, we want
to compute the corresponding driving function. As we will see, it is natural to call this the
unzipping algorithm.

One motivation for doing this is that it gives a way to test if a given model is in fact SLE. One
generates a bunch of random curves in the model, computes their driving functions and then
tests if they could be samples of a Brownian motion. There is a long list of models whose scaling
limit is described by SLE. For many of these models this has been proved and for the others it is
supported by theoretical arguments and simulations. More recent work has considered models
for which the connection with SLE is more speculative. The possibility that domain walls in
spin glass ground states are SLE curves was studied numerically both by Amoruso, Hartman,

8

tilted slits
vertical slites

0

Hastings, and Moore [1] and by Bernard, Le Doussal, and Middleton [7]. Bernard, Boffetta,
Celani and Falkovich considered simulations of certain isolines in two-dimensional turbulence
[5] and surface quasi-geostrophic turbulence [6].

In almost all applications, the parameterization of the curve is not the parameterization by
capacity. Let gs be the conformal map which takes the half plane minus γ[0, s] onto the half
plane, normalized so that for large z

gs(z) = z +
C(s)

z
+ O(

1

z2
), (19)

The coefficient C(s) is the half-plane capacity of γ[0, s]. The value of the driving function at
t is Ut = gs(γ(s)). Thus computing the driving function essentially reduces to computing this
uniformizing conformal map. We will describe the “zipper algorithm” for doing this [13, 18].
A comment on terminology is in order. We use “zipper algorithm” to refer to all the various
algorithms we can get from different choices of the curve γk+1. Marshall and Rohde [18] use
“zipper” to refer only to the choice using tilted slits. Another approach to computing the
driving function may be found in [24].

Let z0, z1, · · · , zn be points along the curve with z0 = 0. In many applications these are
lattice sites. Our goal is to find a sequence of conformal maps hi, i = 1, 2, · · · , n such that
hk ◦ hk−1 ◦ · · · ◦ h1(zk) = 0. Then hk ◦ hk−1 ◦ · · · ◦ h1 sends H \ γ to H where γ is some curve
that passes through z0, z1, · · · zk, . Suppose that the conformal maps h1, h2, · · · , hk have been
defined with these properties. Let

wk+1 = hk ◦ hk−1 ◦ · · · ◦ h1(zk+1) (20)

Then wk+1 is close to the origin. We define hk+1 to be a conformal map sends H \ γk+1 to H

where γk+1 is a short simple curve that ends at wk+1. We also require that hk+1 sends wk+1

9

tilted slits
vertical slits

0

to the origin. As before we choose this curve so that hk+1 is explicitly known. Two possible
choices are “tilted slits” and “vertical slits.” Note that for both of these maps there were two
real degrees of freedom. They will be determined by the condition that hk+1(wk+1) = 0.

Let 2∆i be the capacity of the map hi, and δi the final value of the driving function for hi.
So

hi(z) = z − ∆i +
2δi

z
+ O(

1

z2
) (21)

Then

hk ◦ hk−1 ◦ · · · ◦ h1(z) = z − Ut +
2t

z
+ O(

1

z2
) (22)

where

t =

k
∑

i=1

∆i (23)

Ut =
k
∑

i=1

δi (24)

Thus the driving function of the curve is obtained by “adding up” the driving functions of the
elementary conformal maps hi.

2.4 Faster: blocking functions to get faster algorithm

In this section we show how to greatly speed up both the algorithm for compute the curve γ
given the driving function Ut and the algorithm for computing the driving function Ut given a
curve γ. We start with the first algorithm. One of the main motivations is a fast algorithm for
simulating SLE, but our fast algorithm is applicable to other driving functions as well.

10

tilted slits
vertical slits

0

Recall that points on the approximation to the SLE trace or more generally the curve γ are
given by eq. (18) which says

zk = f1 ◦ f2 ◦ · · · ◦ fk(0) (25)

The number of operations needed to compute a single zk is proportional to k. So to compute
all the points zk with k = 1, 2, · · ·N requires a time O(N2).

It is important to note that the computation of zk does not depend on any of the other
zj . So we can compute a subset of the points zk if we desire. (As an extreme example, if we
are only interested in zN = γ(tN), the time required for the computation is O(N) not O(N2).)
For the timing tests in this paper we compute the points zjd with j = 1, 2, · · · , N/d where d is
some integer. But we emphasize that our algorithm works for any choice of the set of points to
compute.

For the above algorithm the time grows as N2/d. We will refer to the time it takes to
compute one point on the SLE trace as the “time per point computed” (TPPC). The (TPPC)
grows as N for the naive algorithm. We use the TPPC throughout these notes to study the
efficiency. It is a natural measure since it depends on how finely we discretize the time interval
but not on the number of points we choose to compute. The total time to compute the SLE
trace is given by the number of points we want to compute on it times the TPPC. Our goal is
to develop an algorithm for which the TPPC is O(Np) with p < 1.

Our algorithm begins by grouping the functions in (25) into blocks. The number of functions
in a block will be denoted by b. Let

Fj = f(j−1)b+1 ◦ f(j−1)b+2 ◦ · · · ◦ fjb (26)

If we write k as k = mb + l with 0 ≤ l < b, then we have

zk = F1 ◦ F2 ◦ · · · ◦ Fm ◦ fmb+1 ◦ fmb+2 ◦ · · · ◦ fmb+l(0) (27)

11

tilted slits
vertical slits

0

The number of compositions in (27) is smaller than the number in (25) by roughly a factor of b.
Unfortunately, even though the fi are relatively simple, the Fj cannot be explicitly computed.
Our strategy is to approximate the fi by functions whose compositions can be explicitly com-
puted to give an explicit approximation to Fj . For large z, fi(z) is well approximated by its
Laurent series about ∞. One could approximate fi by truncating this Laurent series. This is
the spirit of our approach, but our approximation is slightly different.

Let γ : [0, t] → H be a curve in the upper half plane with γ(0) = 0. Let f(z) be the
conformal map from H onto H \ γ[0, t], We assume that f is normalized is the same way as our
fi, i.e., f(∞) = ∞, f ′(∞) = 1 and f(0) = γ(t). Let a, b > 0 be such that [−a, b] is mapped
onto the slit γ[0, t]. So f is real valued on (−∞,−a] and [b,∞). By the Schwartz reflection
principle, f has an analytic continuation to C \ [−a, b], which we will simply denote by f . Let
R = max{a, b}, so f is analytic on {z : |z| > R} and maps ∞ to itself. Thus f(1/z) is analytic
on {z : 0 < |z| < 1/R} and our assumptions on f imply it has a simple pole at the origin with
residue 1. So we have

f(1/z) = 1/z +
∞
∑

k=0

ck zk (28)

This gives the Laurent series of f about ∞.

f(z) = z +

∞
∑

k=0

ck z−k (29)

If we truncate this Laurent series, it will be a good approximation to f for large z. At first
sight, this Laurent series is the natural approximation to use for f . However, we will use a
different but closely related representation.

Define f̂(z) = 1/f(1/z). Since f(z) does not vanish on {|z| > R}, f̂(z) is analytic in
{z : |z| < 1/R}. Our assumptions on f imply that f̂(0) = 0 and f̂ ′(0) = 1. So f̂ has a power

12

series of the form

f̂(z) =
∞
∑

j=0

ajz
j (30)

with a0 = 0 and a1 = 1. It is not hard to show that 1/R is the radius of convergence of this
power series. We will refer to this power series as the “hat power series” of f . Note that the
coefficients of the hat power series of f are the coefficients of the Laurent series of 1/f .

Need better name for hat power series
The primary advantage of this hat power series over the Laurent series is its behavior with

respect to composition.

(f1 ◦ f2)̂ (z) =
1

f1((f2(1/z))
=

1

f1(1/f̂2(z))
= f̂1(f̂2(z)) (31)

Thus
(f1 ◦ f2)̂ = f̂1 ◦ f̂2 (32)

Our approximation for f(z) is to replace f̂(z) by the truncation of its power series at order n.
So

f(z) =
1

f̂(1/z)
≈
[

n
∑

j=0

ajz
−j

]

−1

(33)

For each fi we compute the power series of f̂i to order n. We then use them and (32) to
compute the power series of F̂j to order n. Let 1/Rj be the radius of convergence for the power

series of F̂j. (Rj is easy to compute. It is the smallest positive number such that Fj(Rj) and
Fj(−Rj) are both real.) Now consider equation (27). If z is large compared to Rj , then Fj(z)
is well approximated using its hat power series. We introduce a parameter L > 1 and use the
hat power series to compute Fj(z) whenever |z| ≥ LRj . When |z| < LRj , we just use (26) to
compute Fj(z). The argument of Fj is the result of applying the previous conformal maps to
0, and so is random. Thus whether or not we can approximate a particular Fj using its hat
power series depends on the randomness and on which zk we are computing.

As part of the algorithm we must compute Rj . This is easy. Rj is the smallest positive
number such that Fj(Rj) and Fj(−Rj) are both real.

In addition to the choice of simple curves we use (tilted slits, vertical slits,), there are
three parameters in our algorithm. b is the number of functions composed in a block. n is
the order at which we truncate our series approximation. L is the scale that determines when
we use series for Fj . The parameter b has little effect on the accuracy of the algorithm and
we should choose it to make the algorithm run as quickly as possible. Eq. (27) suggests that
b should vary with N as

√
N and experiments bear this out. For unzipping the SAW with

N = 1, 000 to 500, 000, we have used b = 20 to 200.
The choice of n involves a tradeoff of speed vs. accuracy. Larger n means more terms in

the series, hence slower but more accurate computations. We typically use n = 12.

13

The parameter L will determine how fast the series converges. Roughly speaking, the series
will converges at least as fast as the geometric series

∑

n L−n . The choice of L also involves
a tradeoff of speed vs. accuracy. Larger L means the seris converges faster and so is more
accurate. But it also means that we use the block functions Fj less frequently, and so the
computation is slower. We typically use L = 4.

To study the speed of the new algorithm, we have simulated SLE with κ = 6 and up to
1, 000, 000 points on the curve. Figure 4 shows the time per point computed vs. N the number
of points. The curve for the naive algorithm is well fit by a line with slope 1 as we expect. The
curve for our faster algorithm is fit by a line with slope around 0.4. In this computation we use
different choices of the block size b for different N to optimize the speed.

 0.001

 0.01

 0.1

 10000 100000 1e+06

T
P

P
C

 (
se

cs
)

N

Figure 4: Time per point computed (TPPC) as a function of N , the number of subintervals in
the partition of the time interval for κ = 8/3. The top curve is the naive algorithm; the bottom
curve is the algorithm using blocking. The lines shown have slopes 1 and 0.4.

To study the accuracy of our series approximation we compute an SLE curve for κ = 6 with
and without the series approximation. We use the same Brownian motion sample path for both
curves. The two curves are shown in figure 5. They cannot be distinguished. An enlargement
is shown in 6.

We now consider the zipper algorithm for computing the driving function of a given curve.
The number of operations needed to compute a single wk+1 is proportional to k. So to compute

14

"sle_no_laurent"
"sle_laurent"

0

Figure 5: Two curves for SLE with κ = 6 are shown. They use the same Brownian motion
sample path but one uses the series approximation and the other does not.

all the points wk+1 requires a time O(N2). The idea for improving this is the same as before -
we group the functions we are composing into blocks and approximate the composition of the
functions in a block using the hat power series. The only minor difference is that the order of
the conformal maps in (20) is the opposite of that in (18). We continue to denote the number
of functions in a block by b. Let

Hj = hjb ◦ hjb−1 ◦ · · · ◦ h(j−1)b+2 ◦ h(j−1)b+1 (34)

If we write k as k = mb + r with 0 ≤ r < b, then (20) becomes

wk+1 = hmb+r ◦ hmb+r−1 ◦ · · · ◦ hmb+1 ◦ Hm ◦ Hm−1 ◦ · · · ◦ H1(zk+1) (35)

As before, the hi are relatively simple, but the composition Hj cannot be explicitly computed.
We approximate hi by its hat power series and compute the compositions in (34) just once
rather than every time we compute a wk.

Recall that hi is normalized so that hi(∞) = ∞ and h′

i(∞) = 1. It maps H minus a simple
curve near the origin to H, sending the tip of the curve to the origin. Let h denote such a
conformal map. Let R be the largest distance from the origin to a point on the curve. Then h
is analytic on {z ∈ H : |z| > R}. Note that h is real valued on the real axis. By the Schwarz
reflection principle it may be analytically continued to {z ∈ C : |z| > R}. Moreover, it does
not vanish on this domain.

15

"sle_no_laurent"
"sle_laurent"

0

Figure 6: An enlargement of a part of the previous figure.

So if we let ĥ(z) = 1/h(1/z), then ĥ(z) is analytic in {z ∈ C : |z| < 1/R}. Our assumptions
on h imply that ĥ(0) = 0 and ĥ′(0) = 1. So ĥ has a power series of the form

ĥ(z) =

∞
∑

j=1

ajz
j (36)

with a1 = 1. The radius of convergence of this power series is 1/R. Note that the coefficients
of this power series are the coefficients of the Laurent series of 1/h.

As before, the advantage of working with the power series of ĥ is its behavior with respect
to composition. (h1 ◦ h2)̂ = ĥ1 ◦ ĥ2 Our approximation for hi(z) is to replace ĥi(z) by the
truncation of its power series at order n. So

hi(z) =
1

ĥi(1/z)
≈
[

n
∑

j=1

ajz
−j

]

−1

(37)

For each hi we compute the power series of ĥi to order n. We then use them to compute the
power series of Ĥj to order n. Let 1/Rj be the radius of convergence for the power series of Ĥj .
Now consider equation (35). If z is large compared to Rj, then Hj(z) is well approximated using

the power series of Ĥj . We introduce a parameter L > 1 and use this series to compute Hj(z)
whenever |z| ≥ LRj . When |z| < LRj , we just use (34) to compute Hj(z). The argument of

16

Hj is the result of applying the previous conformal maps to some zk+1, and so is random. Thus
whether or not we can approximate a particular Hj by its series depends on the randomness
and on which wk+1 we are computing.

We need to compute Rj. Consider the images of z(j−1)b, z(j−1)b+1, · · · zjb−1 under the map
Hj−1◦Hj−2◦· · ·◦H1. The domain of the conformal map Hj is the half-plane H minus some curve
Γj which passes through the images of these points. The radius Rj is the maximal distance from
the origin to a point on Γj. This distance should be very close to or even equal to the maximum
distance from the origin to images of z(j−1)b, z(j−1)b+1, · · · zjb−1 under Hj−1 ◦Hj−2 ◦ · · · ◦H1. So
in our algorithm we approximate Rj by the maximum of these distances.

The improvement in the speed of the zipper algorithm from using our power series approx-
imation is shown in table 1 and figure 7. In these timing tests we use a single SAW with
one million steps. We time how long it takes to unzip the first N steps with and without the
power series approximation. We do the computations using the power series approximation
for different choices for the block length, namely b = 20, 30, 40, 50, 75, 100, 200, 300, and report
the fastest time. The last column in the table indicates the block length that achieves the
fastest time. As a rule of thumb, a good choice for the block length (at least for the SAW) is
b =

√
N/4. The next to last column in the table gives the factor by which the use of the power

series approximation reduces the time needed for the computation. These timing tests were
done on a PC with a 3.4 GHz Pentium 4 processor.

Without the power series approximation the time is O(N2). This is seen clearly in the log-
log plot in figure 7 where the data for unzipping without the power series approximation is fit
quite well by a line with slope 2. The data for unzipping using the power series approximation
is fit by a line with slope 1.35. This indicates that the time required when the power series are
used is approximately O(N1.35).

2.5 Zipper algorithm for finding conformal map of given domain

The zipper algorithm of [13, 18] is actually an algorithm for finding a conformal map of a given
simply connected domain to a standard simply connected domain, e.g., the half plane or unit
disc. The algorithm we described in previous sections is only part of this algorithm for finding
conformal maps. In this section we review the full algorithm for finding conformal maps. This
has nothing to do with SLE or random curves in the plane. We include this discussion since
the ideas of the previous section for speeding up the algorithm apply here as well.

MORE explain zipper

2.6 Open problems/projects - homework

In this section we list some projects related to the algorithms we have discussed.

• We have only discussed the simulation of chordal SLE. The simulation of radial SLE is
similar. Can one use the ideas we used to speed up the simulation of chordal SLE to
speed up the simulation of radial SLE?

17

N time 1 time 2 factor block length
1,000 0.21 0.43 0.50 20
2,000 0.86 0.95 0.91 20
5,000 5.44 3.00 1.81 20

10,000 21.44 7.41 2.89 30
20,000 85.65 18.31 4.68 40
50,000 534.8 62.6 8.54 50

100,000 2128 158 13.45 75
200,000 8562 437 19.59 100
500,000 53516 1674 31.98 200

1,000,000 214451 4675 45.87 200

Table 1: The time (in seconds) needed to unzip a SAW with N steps without using
the power series approximation is shown in the second column (time 1) The time
using the power series approximation is shown in the third column (time 2). The
fourth column (factor) is the ratio of these two times. The block length used is in the
last column.

• Given a simple (no self-intersections) loop, its interior is a simply connected region. So
there is a conformal map from it to the unit disc. There is also a conformal map from
the exterior of the loop to the exteriof of the unit disc. Together these two maps define
a homeomorphism of the unit circle onto itself. This function is sometimes called the
fingerprint. If the simple loop is random, the fingerprint will be random. Can you
simulate this stochastic process ?

• Instead of taking the scaling limit at the critical point, one can consider off critical models
and take the scaling limit in such a way that it has a finite correlation length. What can
you say about the driving process for this scaling limit ? For percolation it is know to be
rather nasty [20]. See also [4].

• There are several methods for numerically computing the conformal map of a given simply
connected domain onto a standard domain, like the unit disc. refs How does our faster
version of the zipper algorithm compare with them?

• Use the ideas presented here for a fast simulation of the SLE(κ,ρ) processes.

• The code in sim SLE is not very user friendly. Is there a better way to package this, e.g.,
as Matlab code, or Mathematica code.

18

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06

T
im

e
(s

ec
s)

N

without approximation

with approximation

Figure 7: The points are the time (in seconds) needed to unzip a SAW with N steps
with and without the power series approximation. The lines have slopes 2 and 1.35.

Acknowledgments:
I thank Don Marshall and Stephen Rohde for useful discussions about the zipper algorithm.
Talks and interactions during visits to Banff ?? and to the Kavli Institute for Theoretical
Physics in September, 2006 contributed to the research included in these notes. The opportunity
to present this material at the 2008 Enrage summer school at IHP is warmly acknowledged.
This research was supported in part by the National Science Foundation under grant DMS-
0201566,DMS-0501168.

References

[1] C. Amoruso, A. K. Hartman, M. B. Hastings, and M. A. Moore, Conformal invariance and
SLE in two-dimensional Ising spin glasses, Phys. Rev. Lett. 97, 267202 (2006). Archived
as arXiv:cond-mat/0601711.

[2] R. Bauer, Discrete Loewner evolution. Archived as math.PR/0303119 in arXiv.org.

19

[3] Bernard,Bauer review

[4] Bernard,Bauer off-critical paper

[5] D. Bernard, G. Boffetta, A. Celani, and G. Falkovich, Conformal invari-
ance in two-dimensional turbulence, Nature Physics 2, 124 (2006). Archived as
arXiv:nlin.CD/0602017.

[6] D. Bernard, G. Boffetta, A. Celani, and G. Falkovich, Inverse turbulent cascades and
conformally invariant curves. Archived as arXiv:nlin.CD/0609069.

[7] D. Bernard, P. Le Doussal, and A. A. Middleton, Are domain walls in 2D spin glasses
described by stochastic Loewner evolutions?, Phys. Rev. B 76, 020403(R) (2007). Archived
as arXiv:cond-mat/0611433.

[8] F. Camia and C. M. Newman, Critical percolation exploration path and SLE(6): a proof
of convergence, preprint. Archived as arXiv:math.PR/0604487.

[9] Cardy review

[10] Chung, Markov chains

[11] T. Kennedy, A fast algorithm for simulating the chordal Schramm-Loewner evolution, J.

Statist. Phys. 128, 1125–1137 (2007). Archived as arXiv:math.PR/0508002.

[12] T. Kennedy, A faster implementation of the pivot algorithm for self-avoiding walks, J.

Statist. Phys. 106, 407–429 (2002). Archived as arXiv:cond-mat/0109308

[13] R. Kühnau, Numerische Realisierung konformer Abbildungen durch ”Interpolation”, Z.

Angew. Math. Mech. 63, 631-637 (1983).

[14] G. Lawler, Conformally Invariant Processes in the Plane, Mathematical Surveys and

Monographs, vol. 114, American Mathematical Society, 2005.

[15] G. Lawler, O. Schramm, and W.Werner, On the scaling limit of planar self-avoiding
walk, Fractal Geometry and Applications: a Jubilee of Benoit Mandelbrot, Part 2, 339–
364, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., Providence, RI, 2004. Archived as
arXiv:math.PR/0204277.

[16] G. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased
random walks and uniform spanning trees, Ann. Probab. 32, 939–995 (2004). Archived as
arXiv:math.PR/0112234.

[17] N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser, Boston-Basel-Berlin, 1993.

20

[18] D. E. Marshall and S. Rohde, Convergence of a variant of the Zipper algorithm for
conformal mapping, SIAM J. Numer. Anal. to appear.

[19] Nienhuis review

[20] P. Nolin, W. Werner Off critical percolation paper.

[21] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees,
Israel J. Math. 118, 221–288 (2000). Archived as arXiv:math.PR/9904022.

[22] S. Smirnov, Critical percolation in the plane, C. R. Acad. Sci. Paris Sér. I Math. 333, 239
(2001).

[23] S. Smirnov, Towards conformal invariance of 2D lattice models, Proceedings of the Inter-
national Congress of Mathematicians, Vol. II, 1421-1451, Eur. Math. Soc., Zurich, 2006.
Archived as arXiv:0708.0032v1 [math-ph].

[24] J. Tsai, The Loewner driving function of trajectory arcs of quadratic differentials, preprint.
Archived as arXiv:0704.1933v2 [math.CV].

[25] D. Zhan, The scaling limits of planar LERW in finitely connected domains, Ann. Probab.

to appear. Archived as arXiv:math.PR/0610304.

[26] S. Rohde, O. Schramm, Basic properties of SLE. Archived as math.PR/0106036 in
arXiv.org.

[27] W. Werner, Random planar curves and Schramm-Loewner evolutions To appear in
Springer Lecture Notes. Archived as math.PR/0303354 in arXiv.org.

[28] Werner - Utah

[29] Grimmett - book

[30] Convergence of a variant of the Zipper algorithm for conformal mapping, with S. Rohde,
SIAM J. Numer. Anal. 45(2007), 2577-2609.

[31] The Loewner differential equation and slit mappings, with S. Rohde, Jour. Amer. Math.
Soc., 18(2005), 763-778.

[32] S. Rohde, private communication

21

