
Numerical simulation of random curves -
lecture 1

Tom Kennedy

Department of Mathematics, University of Arizona

Supported by NSF grant DMS-0501168

http://www.math.arizona.edu/etgk

Tom Kennedy 2008 Enrage Topical School ON GROWTH AND SHAPES, IHP, June 2-6, Paris – p.1/33



Introduction
Theme: simulations that are related to Schramm-Loewner Evolution
(SLE) in some way.

Pedagogic- Ask questions! tgk@math.arizona.edu

Goal: Enable the participants to do state of the art simulations related
to SLE.
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• Simulation of SLE itself; driving function ⇒ random curves
• Inverse problem: random curves ⇒ driving function
• Lattice models related to SLE: LERW, percolation, SAW, Ising
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Topics:
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• Inverse problem: random curves ⇒ driving function
• Lattice models related to SLE: LERW, percolation, SAW, Ising

On-line at http://www.math.arizona.edu/e tgk
• These slides
• More detailed notes (pdf)
• Computer code (C++/linux)
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2 Simulations involving conformal maps
Conformal map: from domain D to domain D′

Bijection that preserves angles

Bijection that is analytic function

Riemann mapping theorem If D, D′ are simply connected domains,
there is a conformal map between them.

Simply connected means no holes in domain

Not unique, 3 real degrees of freedom

Boundary of domain need not be smooth
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2.1 Loewner equation - crash course

H = {z : Im(z) > 0}

Let γ be a curve in H, starting at 0, with no self intersections (simple).

H \ γ[0, t] is a simply connected domain.
⇒ conformal map gt from it onto H

Simple curves ⇔ one parameter families of conformal maps.

Parameterize so that

gt(z) = z +
2t

z
+ O(

1

|z|2 ), z → ∞

Then Loewner’s equation says

∂gt(z)

∂t
=

2

gt(z) − Ut

, g0(z) = z

for some real valued function Ut on [0,∞), the driving function.
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Loewner equation - continued
Tip of curve ↔ driving function

gt(γ(t)) = Ut, γ(t) = g−1
t (Ut)

Need a limit here.

γ(0) = 0 ⇒ U0 = 0.

More generally, γ(0) = U0.

Smoothness of Ut: Solution to Loewner need not exist for all times t.

Let Kt be the set of points z in H for which the solution to this equation
no longer exists at time t.

Nice Ut ⇒ Kt is a curve γ[0, t].

But even for a continuous Ut it need not be.
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Stochastic Loewner equation
Random curves ⇒ random Ut, i.e., stochastic process.

Schramm’s discovery was that conformal invariance and a certain
“Markov property” imply that Ut must be a Brownian motion with mean
zero.

SLE is what you get by taking Ut to be a Brownian motion with mean
zero.

For Ut equal to Brownian motion, whether Kt is a curve depends on
the variance.

In our simulations our approximation to Ut will be nice enough that it
produces a curve.
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Loewner equation as sequence of compositions
gt+s : H \ γ[0, t + s] → H.

Do this in two stages:

gs : H \ γ[0, s] → H, H \ γ[0, s + t] → H \ gs(γ[s, s + t]),

ḡt : H \ gs(γ[s, t + s]) → H (usual normalization)

Uniqueness ⇒ gs+t = ḡt ◦ gs, i.e., ḡt = gs+t ◦ g−1
s , so

d

dt
ḡt(z) =

d

dt
gs+t(g

−1
s (z)) =

2

gs+t(g
−1
s (z)) − Us+t

=
2

ḡt(z) − Us+t

Note that ḡ0(z) = z. Thus ḡt(z) is obtained by solving the Loewner
equation with driving function Ūt = Us+t.

This driving function starts at Us, and so the curve γ̄(t) associated with
ḡt starts growing at Us.
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Loewner eq. as sequence of compositions - cont.
Partition the time interval [0,∞): 0 = t0 < t1 < t2 < · · · tn < · · ·

ḡk = gtk
◦ g−1

tk−1

gtk
= ḡk ◦ ḡk−1 ◦ ḡk−2 ◦ · · · · · · ḡ2 ◦ ḡ1

ḡk(z) is obtained by solving the Loewner equation with driving function
Utk−1+t for t = 0 to t = ∆k, where ∆k = tk − tk−1.

ḡk maps H minus a curve starting at Utk−1
to H.

Intervals of driving function ↔ composition of maps

It is convenient to shift by Utk−1
so our curves start at 0.
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Loewner eq. as sequence of compositions - cont.
Define

gk(z) = ḡk(z + Utk−1
) − Utk−1

,

It is obtained by solving the Loewner equation with driving function
Utk−1+t − Utk−1

for t = 0 to t = ∆k.

Driving function goes from 0 to δk = Utk
− Utk−1

.

gk takes H minus a curve starting at the origin onto H.

and maps tip of that curve to δk.
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The key idea
Two types of simulations:

• Given driving function, find the curve it generates.
• Given a curve, find the corresponding driving function.

For both problems the key idea is the same.

Approximate the driving function on the interval [tk−1, tk] by a function
for which the Loewner may be explicitly solved.

Maps ḡk and gk can then be found explicitly.

gt is approximated by the composition of the appropriate maps.

Need some explicit solutions to Loewner equation
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Tilted slits

f(z) = (z + xl)
1−α(z − xr)

α,

maps H to H \ Γ where Γ is a line segment from 0 to a point reiαπ.

It maps [−xl, xr] onto Γ.

Unfortunately, its inverse cannot be explicitly computed.

For normalization we need (1 − α)xl = αxr.

ft(z) =

(

z + 2
√

t

√

α

1 − α

)1−α
(

z − 2
√

t

√

1 − α

α

)α

produces slit with capacity 2t.
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Tilted slits - continued
gt = f−1

t solves Loewner eq. with driving function

Ut = cα

√
t

where

cα =
2(1 − 2α)
√

α(1 − α)

NB: απ is usual polar angle. Lawler’s α is my 1 − α.
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Vertical slits

Let

gt(z) =
√

(z − δ)2 + 4t + δ

Then it is easy to check gt satisfies Lowener’s equation with a constant
diving function: Ut = δ.

Since the driving function does not start at 0, the curve will not start at
the origin.

The curve is just a vertical slit from δ to δ + 2
√

ti.

Vertical slits mean that we approximate the driving function by a
discontinuous piecewise constant function.

Result is not a curve.
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2.2 Simulating SLE

Recall that gt(γ(t)) = Ut. Define zk = g−1
tk

(Utk
). So

zk = ḡ−1

k ◦ ḡ−1

k−1
◦ · · · ḡ−1

1 (Utk
)

Recall solving Loewner with driving function Utk−1+t −Utk−1
for t = 0 to

t = ∆k, gives gk(z) where gk(z) = ḡk(z + Utk−1
) − Utk−1

. Define

hk(z) = gk(z) − δk = ḡk(z + Utk−1
) − Utk

where δk = Utk
− Utk−1

. Then

hk ◦ hk−1 ◦ · · · ◦ h1(zk) = ḡk ◦ ḡk−1 ◦ · · · ◦ ḡ1(zk) − Utk
= 0

Define fk = h−1

k so

zk = f1 ◦ f2 ◦ · · · ◦ fk(0)

Tom Kennedy 2008 Enrage Topical School ON GROWTH AND SHAPES, IHP, June 2-6, Paris – p.14/33



Simulating SLE - continued
gk maps H minus a curve that starts at 0 onto H, sending the tip of the
curve to δk.

So hk maps H minus the curve onto H, sending the tip to 0.

So fk = h−1

k maps H onto H minus the curve, sending 0 to the tip.

The first map fk welds together a small interval on R containing the
origin to produce a small cut.

Origin is mapped to the tip of this cut.

The second map fk−1 welds together a (possibly different) small
interval to produces another small cut.

The original cut is moved away from the origin with its base being at
the tip of the new cut.

This process continues. Each map introduces a new small cut whose
tip is attached to the image of the base of the previous cut.
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Choice ofδk, ∆k

∆k = tk − tk−1, δk = Utk
− Utk−1

We approximate Ut on each time interval [tk−1, tk] so that gk(z) is

known explicitly.

The two constraints on gk are that the curve must have capacity 2∆k

and gk must map the tip of the curve to δk.

Different choices of how we choose gk subject to these constraints give
us different discretizations of the curve.

However, this choice will not have a significant effect.

Of much greater importance is how we choose the ∆k and δk.
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Uniform ∆k

Uniform ∆k is simplest. For κ not too large this works reasonably well

Figure shows a curve with κ = 8/3 and N = 10, 000 points.
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Uniform ∆k - continued
For larger values of κ, uniform ∆k is a disaster. Figure shows κ = 6.
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Adaptive∆k

For larger values of κ, we should use a varying ∆k. (Rhode).
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Capacity is not “length”
The (half plane) capacity C of a set A is

g(z) = z +
C

z
+ O(

1

z2
)

where g maps H \ A onto H, usual normalizations.

More intuitive def:

C = lim
y→∞

y Eiy[Im(Bτ )]

where Bt is 2d Brownian motion started at iy

τ is the first time it hits A or R.
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Adaptive∆k

Fix a spatial scale ǫ.

Start with uniform ∆k. Compute zk.

Look for zk such that |zk − zk−1| ≥ ǫ

For these time intervals [tk−1, tk], divide the interval into two equal
intervals.

Sample Brownian motion at midpoint of [tk−1, tk] using Brownian
bridge.

Compute new zk, · · ·.
Repeat until all |zk − zk−1| ≤ ǫ.
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Effect of choice of cut
κ = 8/3, tilted slits vs. vertical slits, about 35, 000 points

tilted slits
vertical slites

0
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Effect of choice of cut - continued
κ = 8/3, tilted slits vs. vertical slits - enlarged.

tilted slits
vertical slits

0
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Effect of choice of cut
κ = 6, tilted slits vs. vertical slits, about 35, 000 points

tilted slits
vertical slits

0
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Effect of choice of cut - continued
κ = 6, tilted slits vs. vertical slits - enlarged.

tilted slits
vertical slits

0
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2.3 Inverse SLE: curve⇒ driving function
Given curve, compute the driving function.

Why would you want to do this?

Usually the parameterization of the curve is not by capacity.

So if gs : H \ γ[0, s] → H then

gs(z) = z +
C(s)

z
+ O(

1

z2
),

Coefficient C(s) is capacity of γ[0, s].

The value of the driving function at t is Ut = gs(γ(s)), 2t = C(s).

Algorithm for finding the conformal map is “zipper” algorith.
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Shifting conformal maps - philosophy

We find it more convenient to work with the conformal map

hs(z) = gs(z) − Ut

where C(s) = t.

hs : H \ γ[0, s] → H, sends tip of γ(s) to the origin.

The value of the driving function at s is minus the constant term in the
Laurent expansion of hs about ∞:

hs(z) = z − Ut +
2C(s)

z
+ O(

1

z2
),
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Sequence of compositions
Let γ be a curve in H starting at 0.

Let z0, z1, · · · , zn be points along the curve with z0 = 0.

In many applications these are lattice sites.

Let 2tk be capacity of curve up to zk.

Define ḡk, gk, hk, fk as before, so

zk = f1 ◦ f2 ◦ · · · · · · ◦ fk−1 ◦ fk(0)

To simulate SLE we knew the fk and computed the zk.

hk ◦ hk−1 ◦ · · ·h2 ◦ h1(zk) = 0

Now we know the zk and want to find the hk.
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Finding thehk

Suppose h1, h2, · · · , hk have been defined.

So hk ◦ hk−1 ◦ · · ·h2 ◦ h1 sends zk to 0

It should send zk+1 to a point close to origin :

wk+1 = hk ◦ hk−1 ◦ · · · ◦ h1(zk+1)

Let γk+1 be a short simple curve that ends at wk+1, e.g., tilted slit or
vertical slit.

Let hk+1 be corresponding conformal map.

hk+1 has two real degrees of freedom, determined by wk+1.
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Finding the driving function
Let 2∆i be capacity of hi

Let δi be final value of the driving function for hi. So

hi(z) = z − δi +
2∆i

z
+ O(

1

z2
)

Then

hk ◦ hk−1 ◦ · · · ◦ h1(z) = z − Utk
+

2tk
z

+ O(
1

z2
)

where

tk =
k
∑

i=1

∆i, Utk
=

k
∑

i=1

δi

Driving function of the curve is sum of driving functions of the

elementary conformal maps hi.
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Zipper algorithm for conformal maps

Digression: original zipper algorithm for computing conformal maps.
See Marshall/Rhode paper.

D is simply connected domain. z0, z1, · · · zn are points on its boundary
(counter clock-wise).

φ(z) = i

√

z − z1

z − z0

z0 → ∞, z1 → 0, z2, z3, · · · , zn are mapped to curve γ in H.

Plane is mapped to H, D to one side of γ in H.

Unzip γ. At end D is mapped to quarter plane.

Map quarter plane to H or unit disc or ...
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Lecture 2
• Faster algorithm for simulating SLE
• Faster algorithm for computing driving function.
• Results - pictures of SLE
• Results - driving process of self-avoiding walk
• Open problems
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Intermission
Show movie at intermission
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