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Implementing the Pivot Algorithm
Two bottlenecks:

• Check proposed pivot for intersections
• Carry out the pivot if accepted

Checking:

vague idea: d = ||ω(i) − ω(j)||1
d 6= 0 ⇒ ω(i) 6= ω(j)

ω(i′) 6= ω(j′), if |i − i′| + |j − j′| < d

l is “time” at which the pivot is done.

Inductive assumption:

We have times i, j (j < l < i) such that
ω(i′) 6= ω(j′) if j < j′ < l < i′ < i

Try to decrease j or increase i so that above still holds.
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Implementation - continued
ω(i′) 6= ω(j′) if j < j′ < l < i′ < i

Procedure for increasing i:

mi = dist(ω(i), {ω(k) : j < k < l})
mi = 0 ⇒ self-intersection. mi > 0 ⇒ can increase i by mi.

Try to compute a lower bound bi on mi

Loop on j′ from l − 1 down to j. Set bi = N .

During the loop,

bi ≤ dist(ω(i), {ω(k) : j′ < k < l})
d = ||ω(i) − ω(j′)||.
Pick s < d.
dist(ω(i), {ω(k) : j′ − s ≤ k ≤ j′}) ≥ d − s.
So bi → min{bi, d − s}, j′ → j′ − s
How to choose s ?
Simplest choice: s = d/2.
Faster: If d < bi take s = d/2.
If d ≥ bi, take s = d − bi.
Better choices ???
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Implementation - continued
Carrying out pivots

Pivot ω → ω̄ by

ω̄(j) =

{

ω(j), for j ≤ l
g[ω(j) − ω(l)] + ω(l), for j ≥ l

l is pivot time
g is a lattice symmetry which fixes 0

Could just keep list of the l’s and g’s for the accepted pivots.
Need to be able to find current ω(i) fast.

Suppose we have accepted n pivots and pivot times are
l1 < l2 < · · · < ln.
Let ω be walk after these pivots, ω′ the walk before these pivots.
Segments from li to li+1 are rigid.
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Data structure
• the “old” walk ω′.
• n = number of pivots accepted, but not carried out yet.
• pivot times: l1 < l2 < · · · < ln
• lattice symmetries: g1, g2, · · · , gn

• lattice sites: x1, x2, · · · , xn

ω(j) = giω
′(j) + xi, for li ≤ j ≤ li+1

Choose Npivot large, but << N .

As pivots are accepted, update above.

When n = Npivot, carry out all the pivots

Theory : Npivot should go like
√

N

Practice : Npivot =
√

N/40.
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Assorted Tricks

1. Computing random variables.

Some RV’s are cheap : end to end dist.

Some are expensive: distance from walk to a fixed point.

Use fact that walk is nearest neighbor.

2. Picking the pivot time

If the RV is “supported” near the start, it pays to make the probabilty
distribution for picking the pivot time non-uniform.
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4 Practical Issues

Thermalization or burn-in

For SAW we start with a walk that is a line.

For Ising we start with random configuration (infinite T ).

These are atypical. More precisely, for most RV’s we care about the
value of the RV is way out in the tail of the distribution of the RV.

Need to run the chain until it is in equilibrium.

Crude, practical approach: plot random variable as function of time.

Of course, you can save walk or spin config after your run to use as
initial state for your next run.
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Example of thermalization - SAW
100,000 step SAW. Start with line.

RV is fraction of steps that turn rather than go straight.
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Convergence

1

n

n
∑

k=1

f(Xk) →
∑

x

f(x)πx

But f(Xk) are not independent.

How correlated - auto correlation time

Should do careful time series analysis.

Quick and dirty approach - batched means
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Systematic errors

Convergence of previous slide was the convergence of the Markov
chain.

Typically there are other limits to be taken, possibly even a double limit.

SAW: send number of steps to ∞, then lattice spacing to 0.

Hard to estimate. Example: exponent ν for 3d SAW.

Madras, Sokal : ’88 : ν = 0.592 ± 0.003

Li, Madras, Sokal ’95: ν = 0.5877 ± 0.0006
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Random number generation

Never assume a random number generator is good.

Dan Goodin in San Francisco, 21 May 2008 18:47
It’s been more than a week since Debian patched a massive security
hole in the library the operating system uses to create cryptographic
keys for securing email, websites and administrative servers. Now the
hard work begins, as legions of admins are saddled with the odious
task of regenerating keys too numerous for anyone to estimate.
The flaw in Debian’s random number generator means that OpenSSL
keys generated over the past 20 months are so predictable that an
attacker can correctly guess them in a matter of hours. Not exactly a
comforting thought when considering the keys in many cases are the
only thing guarding an organization’s most precious assets. Obtain the
key and you gain instant access to trusted administrative accounts and
the ability to spoof or spy on sensitive email and web servers.
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Code

Time spent thinking about the code before you write any code is time
very well spent.

Document the code so that in five years you can look at it and figure
out what is going on.

Modularize (object-oriented programming)

C++ lets you create data structures that help do this.

Example of SAW. Classes: point, walk

Details of lattice only appear at low level.
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SAW=SLE8/3

Lawler, Schramm and Werner conjectured that the scaling limit of the
SAW is SLE8/3.

Monte Carlo simulations of the SAW support their equivalence as
unparameterized curves.
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Distribution of Y

Graph is of the cumulative distribution function, P (Y ≤ t) as a function
of t.
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Natural parameterization of SAW
SAW has a natural parameterization. Let W (n) be infinite SAW on unit
lattice. Define

ω(t) = lim
n→∞

n−νW (nt), E ω(t)2 = c′t2ν
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Natural parameterization of SAW
SAW has a natural parameterization. Let W (n) be infinite SAW on unit
lattice. Define

ω(t) = lim
n→∞

n−νW (nt), E ω(t)2 = c′t2ν

SAW: 100,000 steps, 40 segments of 2,500 steps
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Capacity parameterization of SLE
SLE is usually parameterized by half-plane capacity.
If we divide it into segments of equal change in capacity, we get
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Parameterizations
How are SAW and SLE parameterized?

• SLE is usually parameterized so that

hcap(γ[0, t]) = 2t, E γ(t)2 = ct

hcap is half-plane capacity. (Coef of 1/z in Laurent expansion of gt(z)
about ∞.)

• SAW has a natural parameterization. Let W (n) be infinite SAW on
unit lattice. Define

ω(t) = lim
n→∞

n−νW (nt), E ω(t)2 = c′t2ν

Compare γ(1) and ω(1), rescaled so |γ(1)| and |ω(1)| have mean one.
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Distributions of distance from 0 to γ(1), ω(1)
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How to reparameterize?
How should we parameterize SAW and SLE8/3 so the parameterized
curves have the same distribution?

• Easy question: Keep the capacity parameterization for SLE,
reparameterize SAW.

Let C be the random time on the SAW where

hcap(ω[0, C]) = 2(1)

Compare ω(C) and γ(1).

• Interesting question: Use natural parameterization for SAW,
reparameterize SLE.
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How to reparameterize SLE

Use pth variation with p = 1/ν:
Let 0 = tn0 < tn1 < tn2 · · · < tnkn

= t be sequence of partitions of [0, t].

fvar(γ[0, t]) = lim
n→∞

∑

j

|γ(tnj ) − γ(tnj−1)|1/ν

With ν = 1/2 this is the quadratic variation. For Brownian motion it is
non-random and proportional to t.
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How to reparameterize SLE

Use pth variation with p = 1/ν:
Let 0 = tn0 < tn1 < tn2 · · · < tnkn

= t be sequence of partitions of [0, t].

fvar(γ[0, t]) = lim
n→∞

∑

j

|γ(tnj ) − γ(tnj−1)|1/ν

With ν = 1/2 this is the quadratic variation. For Brownian motion it is
non-random and proportional to t.

Conjecture: For the scaling limit of the SAW and other lattice models,

fvar(ω[0, t]) = ct
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How to reparameterize SLE

Use pth variation with p = 1/ν:
Let 0 = tn0 < tn1 < tn2 · · · < tnkn

= t be sequence of partitions of [0, t].

fvar(γ[0, t]) = lim
n→∞

∑

j

|γ(tnj ) − γ(tnj−1)|1/ν

With ν = 1/2 this is the quadratic variation. For Brownian motion it is
non-random and proportional to t.

Conjecture: For the scaling limit of the SAW and other lattice models,

fvar(ω[0, t]) = ct

Key point: The 1/ν variation of ω[0, t] is not random.
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Fractal variation parameterization of SLE
If we take the same SLE curves from previous slide and parameterize
them by p-variation and divide it into segments of equal variation, we
get

Tom Kennedy 2008 Enrage Topical School ON GROWTH AND SHAPES, IHP, June 2-6, Paris – p.21/24



Fractal variation parameterization of SLE
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Comparing at constant fractal variation
Look at ω(1). This should be the same as looking at SAW at when
fractal variation equals c.

Let T be the random time on the SLE when the fractal variation is c.

Compare ω(1) and γ(T ).
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Distributions of distances for γ(T ), ω(1)
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5.2 Future simulations - homework
• Length or natural parameterization: There are multiple definitions.

Are they the same?
• SAW: There is no proof that it is SLE with κ = 8/3. All the

simulations supporting this conjecture are for SAW with fixed
number of steps in unbounded domain. Can you test SLE
prediction for SAW in bounded domain with variable number of
steps.

• SAW: use the fast algorithm to study things like ν in 3d, careful
time series analysis for the autocorrelation time, ...

• SAW vs. “full plane SLE”
• Endpoint distribution of SAW: does SLE have anything to say

about this?
• For SLE, Ut =

√
κBt. Let l(t) be “length” of γ[0, t]. Let Vl(t) = Ut.

What is the process Vl ?
• Bond avoiding walk can be simulated with essentially the same

algorithm as SAW. It should have the same scaling limit.
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