
Chapter 1

Fourier transforms

1.1 Introduction

Let R be the line parameterized by x. Let f be a complex function on R that
is integrable. The Fourier transform f̂ = Ff is

f̂(k) =
∫ ∞

−∞
e−ikxf(x) dx. (1.1)

It is a function on the (dual) real line R′ parameterized by k. The goal is to
show that f has a representation as an inverse Fourier transform

f(x) =
∫ ∞

−∞
eikxf̂(k)

dk

2π
. (1.2)

There are two problems. One is to interpret the sense in which these integrals
converge. The second is to show that the inversion formula actually holds.

The simplest and most useful theory is in the context of Hilbert space. Let
L2(R) be the space of all (Borel measurable) complex functions such that

‖f‖22 =
∫ ∞

−∞
|f(x)|2 dx < ∞. (1.3)

Then L2(R) is a Hilbert space with inner product

(f, g) =
∫

f(x)g(x) dx. (1.4)

Let L2(R′) be the space of all (Borel measurable) complex functions such that

‖h‖22 =
∫ ∞

−∞
|h(k))|2 dk

2π
< ∞. (1.5)

Then L2(R′) is a Hilbert space with inner product

(h, u) =
∫ ∞

−∞
h(k)u(k)

dk

2π
. (1.6)
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We shall see that the correspondence between f and f̂ is a unitary map from
L2(R) onto L2(R′). So this theory is simple and powerful.

1.2 L1 theory

First, we need to develop the L1 theory. The space L1 is a Banach space. Its
dual space is L∞, the space of essentially bounded functions. An example of a
function in the dual space is the exponential function φk(x) = eikx. The Fourier
transform is then

f̂(k) = 〈φk, f〉 =
∫ ∞

−∞
φk(x)f(x) dx, (1.7)

where φk is in L∞ and f is in L1.
Theorem. If f, g are in L1(R), then the convolution f ∗ g is another function

in L1(R) defined by

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y) dy. (1.8)

Theorem. If f, g are in L1(R), then the Fourier transform of the convolution
is the product of the Fourier transforms:

̂(f ∗ g)(k) = f̂(k)ĝ(k). (1.9)

Theorem. Let f∗(x) = f(−x). Then the Fourier transform of f∗ is the
complex conjugate of f̂ .

Theorem. If f is in L1(R), then its Fourier transform f̂ is in L∞(R′) and
satisfies ‖f̂‖∞ ≤ ‖f‖1. Furthermore, f̂ is in C0(R′), the space of bounded
continuous functions that vanish at infinity.

Theorem. If f is in L1 and is also continuous and bounded, we have the
inversion formula in the form

f(x) = lim
ε↓0

∫ ∞

−∞
eikxδ̂ε(k)f̂(k)

dk

2π
, (1.10)

where
δ̂ε(k) = exp(−ε|k|). (1.11)

Proof: The inverse Fourier transform of this is

δε(x) =
1
π

ε

x2 + ε2
. (1.12)

It is easy to calculate that
∫ ∞

−∞
eikxδ̂ε(k)f̂(k)

dk

2π
= (δε ∗ f)(x). (1.13)

However δε is an approximate delta function. The result follows by taking ε → 0.
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1.3 L2 theory

The space L2 is its own dual space, and it is a Hilbert space. It is the setting
for the most elegant and simple theory of the Fourier transform.

Lemma. If f is in L1(R) and in L2(R), then f̂ is in L2(R′), and ‖f‖22 = ‖f̂‖22.
Proof. Let g = f∗ ∗ f . Then g is in L1 and is continuous and bounded.

Furthermore, the Fourier transform of g is |f̂(k)|2. Thus

‖f‖22 = g(0) = lim
ε↓0

∫ ∞

−∞
δ̂ε(k)|f̂(k)|2 dk

2π
=

∫ ∞

−∞
|f̂(k)|2 dk

2π
. (1.14)

Theorem. Let f be in L2(R). For each a, let fa = 1[−a,a]f . Then fa is in
L1(R) and in L2(R), and fa → f in L2(R) as a →∞. Furthermore, there exists
f̂ in L2(R′) such that f̂a → f̂ as a →∞.

Explicitly, this says that the Fourier transform f̂(k) is characterized by
∫ ∞

−∞
|f̂(k)−

∫ a

−a

e−ikxf(x) dx|2 dk

2π
→ 0 (1.15)

as a →∞.
These arguments show that the Fourier transformation F : L2(R) → L2(R′)

defined by Ff = f̂ is well-defined and preserves norm. It is easy to see from
the fact that it preserves norm that it also preserves inner product: (Ff, Fg) =
(f, g).

Define the inverse Fourier transform F ∗ in the same way, so that if h is in
L1(R′) and in L2(R′), then F ∗h is in L2(R) and is given by the usual inverse
Fourier transform formula. Again we can extend the inverse transformation to
F ∗ : L2(R′) → L2(R) so that it preserves norm and inner product.

Now it is easy to check that (F ∗h, f) = (h, Ff). Take h = Fg. Then
(F ∗Fg, f) = (Fg, Ff) = (g, f). That is F ∗Fg = g. Similarly, one may show
that FF ∗u = u. These equations show that F is unitary and that F ∗ = F−1 is
the inverse of F . This proves the following result.

Theorem. The Fourier transform F initially defined on L1(R) ∩ L2(R) ex-
tends by continuity to F : L2(R) → L2(R′). The inverse Fourier transform F ∗

initially defined on L1(R′) ∩ L2(R′) extends by continuity to F ∗ : L2(R′) →
L2(R). These are unitary operators that preserve L2 norm and preserve inner
product. Furthermore, F ∗ is the inverse of F .

1.4 Absolute convergence

We have seen that the Fourier transform gives a perfect correspondence between
L2(R) and L2(R′). For the other spaces the situation is more complex.

The map from a function to its Fourier transform gives a continuous map
from L1(R) to part of C0(R′). That is, the Fourier transform of an inte-
grable function is continuous and bounded (this is obvious) and approach zero



4 CHAPTER 1. FOURIER TRANSFORMS

(Riemann-Lebesgue lemma). Furthermore, this map is one-to-one. That is, the
Fourier transform determines the function.

The inverse Fourier transform gives a continuous map from L1(R′) to C0(R).
This is also a one-to-one transformation.

One useful fact is that if f is in L1(R) and g is in L2(R), then the convolution
f ∗ g is in L2(R). Furthermore, f̂ ∗ g(k) = f̂(k)ĝ(k) is the product of a bounded
function with an L2(R′) function, and therefore is in L2(R′).

However the same pattern of the product of a bounded function with an L2

function can arise in other ways. For instance, consider the translate fa of a
function f in L2(R) defined by fa(x) = f(x−a). Then f̂a(k) = exp(−ika)f̂(k).
This is also the product of a bounded function with an L2(R′) function.

One can think of this last example as a limiting case of a convolution.
Let δε be an approximate δ function. Then (δε)a ∗ f has Fourier transform
exp(−ika)δ̂ε(k)f̂(k). Now let ε → 0. Then (δε)a∗f → fa, while exp(−ika)δ̂ε(k)f̂(k) →
exp(−ika)f̂(k).

Theorem. If f is in L2(R) and if f ′ exists (in the sense that f is an integral
of f) and if f ′ is also in L2(R), then the Fourier transform is in L1(R′). As a
consequence f is is C0(R).

Proof: f̂(k) = (1/
√

1 + k2) · √1 + k2f̂(k). Since f is in L2(R), it follows
that f̂(k) is in L2(R). Since f ′ is in L2(R), it follows that kf̂(k) is in L2(R′).
Hence

√
1 + k2f̂(k) is in L2(R′). Since 1/

√
1 + k2 is also in L2(R′), it follows

from the Schwarz inequality that f̂(k) is in L1(R′).

1.5 Fourier transform pairs

There are some famous Fourier transforms.
Fix σ > 0. Consider the Gaussian

gσ(x) =
1√

2πσ2
exp(− x2

2σ2
). (1.16)

Its Fourier transform is

ĝσ(k) = exp(−σ2k2

2
). (1.17)

Proof: Define the Fourier transform ĝσ(k) by the usual formula. Check that
(

d

dk
+ σ2k

)
ĝσ(k) = 0. (1.18)

This proves that

ĝσ(k) = C exp(−σ2k2

2
). (1.19)

Now apply the equality of L2 norms. This implies that C2 = 1. By looking at
the case k = 0 it becomes obvious that C = 1.
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Let ε > 0. Introduce the Heaviside function H(k) that is 1 for k > 0 and 0
for k < 0. The two basic Fourier transform pairs are

fε(x) =
1

x− iε
(1.20)

with Fourier transform
f̂ε(k) = 2πiH(−k)eεk. (1.21)

and its complex conjugate

fε(x) =
1

x + iε
(1.22)

with Fourier transform

f̂ε(−k) = −2πiH(k)e−εk. (1.23)

These may be checked by computing the inverse Fourier transform. Notice that
fε and its conjugate are not in L1(R).

Take 1/π times the imaginary part. This gives the approximate delta func-
tion

δε(x) =
1
π

ε

x2 + ε2
. (1.24)

with Fourier transform
δ̂ε(k) = e−ε|k|. (1.25)

Take the real part. This gives the approximate principal value of 1/x function

pε(x) =
x

x2 + ε2
(1.26)

with Fourier transform

p̂ε(k) = −πi[H(k)e−εk −H(−k)eεk]. (1.27)

1.6 Problems

1. Let f(x) = 1/(2a) for −a ≤ x ≤ a and be zero elsewhere. Find the L1(R),
L2(R), and L∞(R) norms of f , and compare them.

2. Find the Fourier transform of f .

3. Find the L∞(R′), L2(R′), and L1(R′) norms of the Fourier transform, and
compare them.

4. Compare the L∞(R′) and L1(R) norms for this problem. Compare the
L∞(R) and L1(R′) norms for this problem.

5. Use the pointwise convergence at x = 0 to evaluate an improper integral.

6. Calculate the convolution of f with itself.

7. Find the Fourier transform of the convolution of f with itself. Verify in
this case that the Fourier transform of the convolution is the product of
the Fourier transforms.
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1.7 Poisson summation formula

Theorem: Let f be in L1(R) with f̂ in L1(R′) and such that
∑

k |f̂(k)| < ∞.
Then

2π
∑

n

f(2πn) =
∑

k

f̂(k). (1.28)

Proof: Let
S(t) =

∑
n

f(2πn + t). (1.29)

Since S(t) is 2π periodic, we can expand

S(t) =
∑

k

akeikt. (1.30)

It is easy to compute that

ak =
1
2π

∫ 2π

0

S(t)e−ikt dt =
1
2π

f̂(k). (1.31)

So the Fourier series of S(t) is absolutely summable. In particular

S(0) =
∑

k

ak. (1.32)


