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1. Fourier series

@ We saw before that the set of functions {1, cos(x), sin(x),
cos(2x), sin(2x), ---, cos(mx), sin(mx), ---}, where mis a
non-negative integer, forms a complete orthogonal basis of the
space of square integrable functions on [—m, 7].

@ This means that we can define the Fourier series of any square
integrable function on [—m, 7| as

f(x)=ap+ Z [an cos(nx) + by sin(nx)],
n=1

1
where ag = oy f(x) dx and, for n > 1,
T

-7

ap = 1 /7r f(x)cos(nx) dx and b, = %/W f(x)sin(nx) dx.

™ J_x —T
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Convergence of Fourier series

@ If f is continuously differentiable on [—m, 7] except at
possibly a finite number of points where it has a left-hand and
a right-hand derivative, then the partial sum

N
fn(x) = ao + Z [an cos(nx) + by, sin(nx)]

n=1

with the a; defined above, converges to f(x) as N — o if f is
continuous at x. At a point of discontinuity, the Fourier series
converges towards

[f(x+) + f(x_)} .

N | —
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Convergence of Fourier series (continued)

e Examples:

e Calculate the first three non-zero Fourier coefficients of the
rectangular wave function

_ —% if —m<x<0 B
f(x) = { =' fo<x<m and f(x+2m) = f(x).
e To what value does the above Fourier series converge if
e x =207
e x=17
e x=nm"?

e Experiment with the MIT applet called Fourier Coefficients.

@ Gibbs phenomenon: Near a point of discontinuity xp, the
partial sums fy(x) exhibits oscillations which, for small values
of N, are noticeable even far from xg. As N — oo, the
oscillations get “compressed” near xg but never disappear.
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2. Fourier series for 2L-periodic functions

@ If instead of being 2m-periodic, the function f has period 2L,
we can obtain its Fourier series by re-scaling the variable x.

L
@ Indeed, let g(v) = f (V—) Then, g is 2m-periodic and one
T

can write down its Fourier series as before. Going back to the
x-variable, one obtains

N ™ in (n™
f(x)_ao+;{ancos<n L>+bn5|n (” i )}v
L

where ag = o
—L

f(x) dx and, for n > 1,

L X

ap = %/_LL f(x) cos (nW—LX) dx, bp= %/_L f(x)sin <nT> dx.
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3. Even and odd functions

From the above formula, it is easy to see that
@ If f is even, then the b,'s are all zero, and the Fourier series
of f is a Fourier cosine series, i.e.

f(x) = ao +§ [an cos (nW—LXﬂ :

Its non-zero coefficients are given by

1 [t 2 [t X
ap = Z/o f(x) dx, ap = z/o f(x) cos (nT) dx.

@ Similarly, if f is odd, then the a,’s are all zero, and the
Fourier series of f is a Fourier sine series,

2

- X . . [ TX
f(x)= Z {bn sin <nT>} : b, = z/o f(x)sin <nT> dx.
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Complex form of the Fourier series

@ The Fourier series of a function f,

0003 s (1) s (o)

can be re-written in complex form as

Z Cn €Xp (i nT)

n=—oo

where the complex coefficients ¢, are given by

1 L
=57 B f(x)exp <—in7T—LX) dx, n=0, £1, +2,
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5. Half-range expansions

@ Sometimes, if one only needs a Fourier series for a function
defined on the interval [0, L], it may be preferable to use a
sine or cosine Fourier series instead of a regular Fourier series.

@ This can be accomplished by extending the definition of the
function in question to the interval [—L, 0] so that the
extended function is either even (if one wants a cosine series)
or odd (if one wants a sine series).

@ Such Fourier series are called half-range expansions.

e Example: Find the half-range sine and cosine expansions of
the function f(x) =1 on the interval [0, 1].
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6. Forced oscillations

@ Consider the forced and damped oscillator described by
ay” + by’ + cy = f(x), where b> — 4ac < 0, b is positive and
small, and f is a periodic forcing function.

@ We know that the general solution to this equation is the sum
of a particular solution and the general solution to the
homogeneous equation, i.e. y(x) = yn(x) + yp(x).

@ Since the equation is linear, the principle of superposition
applies. Using Fourier series, we can think of f as a
superposition of sines and cosines. As a consequence, if one of
the terms in the forcing has a frequency close to the natural
frequency of the oscillator, one can expect the solution to be
dominated by the corresponding mode.

@ See the MIT applet called Harmonic Frequency Response.
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