Matrices and vectors Linear independence Vector space Rank

Chapters 7-8: Linear Algebra

Sections 7.1, 7.2 & 7.4

1. Matrices and vectors

• An $m \times n$ matrix is an array with m rows and n columns. It is typically written in the form

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

where i is the row index and j is the column index.

- A column vector is an $m \times 1$ matrix. Similarly, a row vector is a $1 \times n$ matrix.
- The entries a_{ij} of a matrix A may be real or complex.

Matrix addition and scalar multiplication Matrix multiplication Rules for matrix addition and multiplication Transposition

Matrices and vectors (continued)

• Examples:

•
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is a 2 × 2 square matrix with real entries.

•
$$u = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 is a column vector of A .

•
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 3 - 7i \end{bmatrix}$$
 is a 3×3 diagonal matrix, with complex entries.

• An $n \times n$ diagonal matrix whose entries are all ones is called the $n \times n$ identity matrix.

•
$$C = \begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{bmatrix}$$
 is a 2 × 4 matrix with real entries.

Matrix addition and scalar multiplication

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two $m \times n$ matrices, and let c be a scalar.

 The matrices A and B are equal if and only if they have the same entries,

$$A = B \iff a_{ij} = b_{ij}$$
, for all $i, j, 1 \le i \le m, 1 \le j \le n$.

• The sum of A and B is the $m \times n$ matrix obtained by adding the entries of A to those of B,

$$A+B=[a_{ij}+b_{ij}].$$

• The product of A with the scalar c is the $m \times n$ matrix obtained by multiplying the entries of A by c,

$$cA = [ca_{ij}].$$

2. Matrix multiplication

• Let $A = [a_{ij}]$ be an $m \times n$ matrix and $B = [b_{ij}]$ be an $n \times p$ matrix. The product C = AB of A and B is an $m \times p$ matrix whose entries are obtained by multiplying each row of A with each column of B as follows:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

• **Examples:** Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $C = \begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{bmatrix}$.

- Is the product AC defined? If so, evaluate it.
- Same question with the product *CA*.
- What is the product of A with the third column vector of C?

Matrix multiplication (continued)

• More examples:

Consider the system of equations

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 4 \\ x_2 - 7x_3 = 0 \\ -x_1 + 4x_2 - 6x_3 = -10 \end{cases}.$$

Write this system in the form AX = Y, where A is a matrix and X and Y are two column vectors.

Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}.$$

Calculate the products AB and BA.

3. Rules for matrix addition and multiplication

- The rules for matrix addition and multiplication by a scalar are the same as the rules for addition and multiplication of real or complex numbers.
- In particular, if A and B are matrices and c_1 and c_2 are scalars, then

$$A + B = B + A$$

 $(A + B) + C = A + (B + C)$
 $c_1 (A + B) = c_1 A + c_1 B$
 $(c_1 + c_2)A = c_1 A + c_2 A$
 $c_1 (c_2 A) = (c_1 c_2)A$

whenever the above quantities make sense.

Rules for matrix addition and multiplication (continued)

• The product of two matrices is associative and distributive, i.e.

$$A(BC) = (AB)C = ABC$$

 $A(B+C) = AB + AC$ $(A+B)C = AC + BC$.

However, the product of two matrices is not commutative. If
 A and B are two square matrices, we typically have

$$AB \neq BA$$

 For two square matrices A and B, the commutator of A and B is defined as

$$[A,B] = AB - BA.$$

In general, $[A, B] \neq 0$. If [A, B] = 0, one says that the matrices A and B commute.

4. Transposition

• The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T obtained from A by switching its rows and columns, i.e.

if
$$A = [a_{ij}]$$
, then $A^T = [a_{ji}]$.

- **Example:** Find the transpose of $C = \begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{bmatrix}$.
- Some properties of transposition. If A and B are matrices, and c is a scalar, then

$$(A + B)^{T} = A^{T} + B^{T}$$
 $(c A)^{T} = c A^{T}$
 $(A B)^{T} = B^{T} A^{T}$ $(A^{T})^{T} = A$,

whenever the above quantities make sense.

5. Linear independence

• A linear combination of the n vectors a_1, a_2, \dots, a_n is an expression of the form

$$c_1 a_1 + c_2 a_2 + \cdots + c_n a_n$$

where the c_i 's are scalars.

• A set of vectors $\{a_1, a_2, \dots, a_n\}$ is linearly independent if the only way of having a linear combination of these vectors equal to zero is by choosing all of the coefficients equal to zero. In other words, $\{a_1, a_2, \dots, a_n\}$ is linearly independent if and only if

$$c_1a_1 + c_2a_2 + \cdots + c_na_n = 0 \Longrightarrow c_1 = c_2 = \cdots = c_n = 0.$$

Linear independence (continued)

• Examples:

- Are the columns of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ linearly independent?
- Same question with the columns of the matrix

$$C = \left[\begin{array}{cccc} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{array} \right].$$

- Same question with the rows of the matrix C defined above.
- A set that is not linearly independent is called linearly dependent.
- Can you find a condition on a set of n vectors, which would guarantee that these vectors are linearly dependent?

6. Vector space

- A real (or complex) vector space is a non-empty set V whose elements are called vectors, and which is equipped with two operations called vector addition and multiplication by a scalar.
- The vector addition satisfies the following properties.
 - ① The sum of two vectors $a \in V$ and $b \in V$ is denoted by a + b and is an element of V.
 - 2 It is commutative: a + b = b + a, for all $a, b \in V$.
 - 1 It is associative: (a+b)+c=a+(b+c) for all $a,b,c\in V$.
 - ① There exists a unique zero vector, denoted by 0, such that for every vector $a \in V$, a + 0 = a.
 - **5** For each $a \in V$, there exists a unique vector $(-a) \in V$ such that a + (-a) = 0.

Vector space (continued)

- The multiplication by a scalar satisfies the following properties.
 - ① The multiplication of a vector $a \in V$ by a scalar $\alpha \in \mathbb{R}$ (or $\alpha \in \mathbb{C}$) is denoted by α a and is an element of V.
 - Multiplication by a scalar is distributive:

$$\alpha (a + b) = \alpha a + \alpha b,$$
 $(\alpha + \beta) a = \alpha a + \beta a,$

for all $a, b \in V$ and $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C}).

- ③ It is associative: $\alpha(\beta a) = (\alpha \beta) a$ for all $a \in V$ and $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C}).
- Multiplying a vector by 1 gives back that vector, i.e.

$$1 a = a$$
,

for all $a \in V$.

Bases and dimension

• The span of set of vectors $\mathcal{U} = \{a_1, a_2, \cdots, a_n\}$ is the set of all linear combinations of vectors in \mathcal{U} . It is denoted by

$$\mathsf{Span}\{a_1, a_2, \cdots, a_n\}$$
 or $\mathsf{Span}(\mathcal{U})$

and is a subspace of V.

- ullet A basis ${\mathcal B}$ of a subspace S of V is a set of vectors of S such that
 - Span(\mathcal{B}) = S;
 - \bigcirc \mathcal{B} is a linearly independent set.
- Theorem: If a basis \mathcal{B} of a subspace S of V has n vectors, then all other bases of S have exactly n vectors.
- The dimension of a vector space V (or of a subspace S of V) spanned by a finite number of vectors is the number of vectors in any of its bases.

7. Rank

- The row space of an $m \times n$ matrix A is the span of the row vectors of A. If A has real entries, the row space of A is a subspace of \mathbb{R}^n .
- Similarly, the column space of A is the span of the column vectors of A, and is a subspace of \mathbb{R}^m .
- The rank of a matrix A is the dimension of its column space.
- Theorem: The dimensions of the row and column spaces of a matrix A are the same. They are equal to the rank of A.
- **Example:** Check that the row and column spaces of $C = \begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{bmatrix}$ are vector subspaces, and find their dimension.

The rank theorem

- The null space of an $m \times n$ matrix A, $\mathcal{N}(A)$ is the set of vectors u such that Au = 0. If A has real entries, then $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n .
- The rank theorem states that if A is an $m \times n$ matrix, then

$$\operatorname{rank}(A) + \dim (\mathcal{N}(A)) = n.$$

• Example: Find the rank and the null space of the matrix

$$C = \left[\begin{array}{cccc} 1 & 2 & 3 & 10 \\ 1 & 6 & -8 & 0 \end{array} \right].$$

Check that the rank theorem applies.