Linear systems of equations

Definitions
Solutions

1. Linear systems of equations

Chapters 7-8: Linear Algebra

Sections 7.5, 7.8 & 8.1

Chapters 7-8: Linear Algebra

@ A linear system of equations of the form
anx1 +apxo+ -+ aipxn = by
a1x1 + axnxp + -+ + apxn = by
amiX1 + am2x2 + -+ + amnXn = bm

can be written in matrix form as AX = B, where

ail  an ain X1 by

a1 ax azn X2 by
A= , X=| . |, B= .

dml adm2 dmn Xn bm
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Solution(s) of a linear system of equations

@ Given a matrix A and a vector B, a solution of the system
AX = B is a vector X which satisfies the equation AX = B.

e If B is not in the column space of A, then the system
AX = B has no solution. One says that the system is not
consistent. In the statements below, we assume that the
system AX = B is consistent.

@ If the null space of A is non-trivial, then the system AX = B
has more than one solution.

@ The system AX = B has a unique solution provided
dim(N(A)) = 0.

@ Since, by the rank theorem, rank(A) + dim(N(A)) = n (recall
that n is the number of columns of A), the system AX = B
has a unique solution if and only if rank(A) = n.
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Solution(s) of a linear system of equations (continued)

@ A linear system of the form AX = 0 is said to be
homogeneous.

@ Solutions of AX = 0 are vectors in the null space of A.

o If we know one solution Xy to AX = B, then all solutions to
AX = B are of the form

X = Xg+ X

where X}, is a solution to the associated homogeneous
equation AX = 0.

@ In other words, the general solution to the linear system
AX = B, if it exists, can be written as the sum of a particular
solution Xy to this system, plus the general solution of the
associated homogeneous system.
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2. Inverse of a matrix

e If Ais a square n X n matrix, its inverse, if it exists, is the
matrix, denoted by A~!, such that

AA T =ATA= 1,
where I, is the n x n identity matrix.

@ A square matrix A is said to be singular if its inverse does not
exist. Similarly, we say that A is non-singular or invertible if A
has an inverse.

@ The inverse of a square matrix A = [aj] is given by
1L
det(A)

where det(A) is the determinant of A and Cjj is the matrix of
cofactors of A.
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Determinant of a matrix

@ The determinant of a square n x n matrix A = [aj;] is the
scalar

n n
det(A) = Z a,-jC,-j = Z a,-J-C,-j
i=1 j=1
where the cofactor Cj; is given by
Cj = (-1)'" My,

and the minor Mj; is the determinant of the matrix obtained
from A by “deleting” the i-th row and j-th column of A.

1
e Example: Calculate the determinant of A= | 4
7
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Properties of the inverse

@ If a determinant has a row or a column entirely made of zeros,
then the determinant is equal to zero.

@ The value of a determinant does not change if one replaces
one row (resp. column) by itself plus a linear combination of
other rows (resp. columns).

@ If one interchanges 2 columns in a determinant, then the
value of the determinant is multiplied by —1.

@ If one multiplies a row (or a column) by a constant C, then
the determinant is multiplied by C.

e If Ais a square matrix, then A and AT have the same
determinant.
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@ Since the inverse of a square matrix A is given by

- 1
t= det(A) (Gl

we see that A is invertible if and only if det(A) # 0.

a1l 412

@ If Ais an invertible 2 x 2 matrix,
a1 a2

and det(A) = aj1a2 — azare.

| ther
|\

(A1)t =A

—ad12
ail

an2
—aqi

@ If A and B are invertible, then

(AB)"1=B71A"!  and
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Linear systems of n equations with n unknowns

@ Consider the following linear system of n equations with n
unknowns,

aiixy + axo + -+ aixn = by
ar1xy + axnxo + -+ + anxn = b

Ap1X1 + an2X2 + -+ -+ apnXn = bn

@ This system can be also be written in matrix form as
AX = B, where A is a square matrix.

o If det(A) # 0, then the above system has a unique solution X
given by
X=A"B.
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Linear systems of equations - summary

Consider the linear system AX = B where A is an m X n matrix.

@ The system may not be consistent, in which case it has no
solution.

@ To decide whether the system is consistent, check that B is in
the column space of A.

@ If the system is consistent, then

o Either rank(A) = n (which also means that dim(N/(A)) = 0),
and the system has a unique solution.

o Or rank(A) < n (which also means that A/(A) is non-trivial),
and the system has an infinite number of solutions.
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Linear systems of equations - summary (continued)

Consider the linear system AX = B where A is an m X n matrix.

@ If m = n and the system is consistent, then

o Either det(A) # 0, in which case rank(A) = n,
dim(N(A)) = 0, and the system has a unique solution;

o Or det(A) = 0, in which case dim(N(A)) > 0, rank(A) < n,

and the system has an infinite number of solutions.

o Note that when m = n, having det(A) = 0 means that the
columns of A are linearly dependent.

e It also means that A/(A) is non-trivial and that rank(A) < n.
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3. Eigenvalues and eigenvectors

@ Let A be a square n x n matrix. We say that X is an
eigenvector of A with eigenvalue X if

X#0 and AX = A\X.
@ The above equation can be re-written as
(A= X,)X =0.

@ Since X # 0, this implies that A — A/, is not invertible, i.e.
that det(A — Al,) = 0.

@ The eigenvalues of A are therefore found by solving the
characteristic equation det(A — Al,) = 0.
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Eigenvalues

@ The characteristic polynomial det(A — A/,) is a polynomial of
degree nin \. It has n complex roots, which are not
necessarily distinct from one another.

e If \is a root of order k of the characteristic polynomial
det(A — Al,), we say that \ is an eigenvalue of A of algebraic
multiplicity k.

@ If A has real entries, then its characteristic polynomial has real
coefficients. As a consequence, if A is an eigenvalue of A, so
is A.

@ It Ais a 2 x 2 matrix, then its characteristic polynomial is of
the form A2 — A Tr(A) + det(A), where the trace of A, Tr(A),
is the sum of the diagonal entries of A.
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Eigenvalues (continued)

e Examples: Find the eigenvalues of the following matrices.

o s

—-13 -36
° C‘[ 6 17 ]
4 -1 1
o D= —1 4 —1
-1 1 2
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Eigenvectors

@ Once an eigenvalue X of A has been found, one can find an
associated eigenvector, by solving the linear system

(A= M) X =0.

@ Since N (A — Al,) is not trivial, there is an infinite number of
solutions to the above equation. In particular, if X is an

eigenvector of A with eigenvalue A, so is aX, where o € R (or
C) and a # 0.

@ The set of eigenvectors of A with eigenvalue )\, together with
the zero vector, form a subspace of R” (or C"), E,, called the
eigenspace of A corresponding to the eigenvalue \.

@ The dimension of E) is called the geometric multiplicity of .
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Eigenvectors (continued)

e Examples: Find the eigenvectors of the following matrices.
Each time, give the algebraic and geometric multiplicities of
the corresponding eigenvalues.

.A:[—Olg]

~13 —36
° C_[ 6 17 ]

4 —1 1
sp_| 1 4 -1

1 1 2
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Properties of eigenvalues and eigenvectors (continued)

@ The geometric multiplicity my of an eigenvalue \ is less than
or equal to its algebraic multiplicity M.

o If My =1, then my = 1.

e If my is not equal to My, then one can find My — m, linearly
independent generalized eigenvectors of A, by solving a

sequence of equations of the form
(A—)\In)U,'_H:U,', I'E{].,-”,M)\—m)\}

where U; = X) is a genuine eigenvector of A with eigenvalue
A
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e Examples: Find the genuine and generalized eigenvectors of
the following matrices

4 1 00
0 4 00

*M=100 41
0 0 0 4
0100
0 010

*N=100 01
0 00O

@ If A has k distinct eigenvalues and By, - - , By are bases of
the corresponding generalized eigenspaces, then {Bi, - , Bk}

is a basis of R” (or C").
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