
TWISTED LINEAR PERIODS AND A NEW RELATIVE TRACE FORMULA

HANG XUE AND WEI ZHANG

Abstract. We study the linear periods on GL2n twisted by a character using a new relative trace

formula. We establish the relative fundamental lemma and the transfer of orbital integrals. Together

with the spectral isolation technique of Beuzart-Plessis–Liu–Zhang–Zhu, we are able to compare

the elliptic part of the relative trace formulae and to obtain new results generalizing Waldspurger’s

theorem in the n = 1 case.
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1. Introduction

1.1. Linear periods. Let F be a number field and E a quadratic field extension of F , with their

rings of adèles denoted by AF and AE . Let η : A×F /F
× → {±1} be the quadratic character attached

to E/F by class field theory. Let ω : A×F /F
× → C× and χ : A×E/E

× → C× be two characters with

χn|A×F ω = 1. Let A be a central simple algebra over F of dimension 4n2. Fix an embedding E → A
of F -algebras, and let B be the centralizer of E in A. Let G = A× and H = B×, both regarded as

algebraic groups over F . Let Z be the center of G. Let π be an irreducible cuspidal automorphic

representation of G(AF ) with central character ω. Take ϕ ∈ π and define

Pχ(ϕ) =

∫
Z(AF )H(F )\H(AF )

ϕ(h)χ(h)dh.(1.1)

We propose the following conjecture.
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Conjecture 1.1. (i) If Pχ is not identically zero, then L(1
2 , π0,E ⊗ χ) 6= 0 and L(s, π0,∧2 ⊗ χ|A×F )

has a simple pole at s = 1 where π0 is the Jacquet–Langlands transfer of π to GL2n(AF ), and π0,E is

the base change of π0 to GL2n(AE). Moreover for all places v of F , the Langlands parameter of π0,v

takes value in GSp2n(C) with similitude factor χv|F×v , and ε(π0,E,v ⊗ χv)ηv(−1)nχv(−1)n = (−1)r

if v ∈ S, where r is the split rank of G over Fv. This integer r is also the integer such that

Av = A⊗ Fv = Mr(C) where C is a division algebra over Fv.

(ii) If all archimedean places of F split in E, or n is odd, we also have a converse. Let π0 be an

irreducible cuspidal automorphic representation of GL2n(AF ). Assume that L(1
2 , π0,E ⊗χ) 6= 0 and

L(s, π0,∧2⊗χ|A×F ) has a simple pole at s = 1. Then there is a central simple algebra A containing E

over F and an irreducible cuspidal representation π of G(AF ), such that π is the Jacquet–Langlands

transfer of π0 and Pχ is not identically zero on π. Moreover if n is odd, we can take A to be a

matrix algebra over a (possibly split) quaternion algebra.

If n = 1, then this is the celebrated result of Waldspurger [Wal85]. If χ is trivial and A is of the

form Mn(D) where D is a quaternion algebra over F containing E, the conjecture reduces to the

one proposed by Guo and Jacquet in [Guo96]. The description of the split rank of G over Fv and

the root number of πv, regardless of χ being trivial or not, is (a consequence of) the conjecture of

Prasad and Takloo-Bighash [PTB11, Conjecture 1].

When χ is trivial, a relative trace formula approach was proposed in [Guo96], generalizing the

work of [Jac86]. The study of these relative trace formulae yields both local and global results

towards Conjecture 1.1 in the case χ being trivial, cf. [FMW18, Li21, Li22, Xue21]. However these

relative trace formulae make essential use of the fact that L(s, π0,E) factors, i.e. L(s, π0,E) =

L(s, π0)L(s, π0 ⊗ ηE/F ), so they cannot be extended to the case of nontrivial χ.

The goal of this paper is to propose a new relative trace formula towards Conjecture 1.1, and to

confirm many cases of the conjecture by comparing the elliptic parts of the relative trace formula.

We do this by establishing the relevant fundamental lemma and transfer of orbital integrals.

Remark 1.2. The assumption that E/F splits at the archimedean places comes from the fact that

the only central simple algebras over R are matrix algebras over quaternion algebras. In the case

n being even, they do not provide us with enough orbits in our relative trace formula approach. A

similar phenomenon appears even when χ is trivial, cf. [Guo96].

Remark 1.3. The statement of Conjecture 1.1 also makes sense when E = F ×F provided that the

embedding E → A makes A a free E-module. If χ is trivial, some preliminary studies have been

carried out in [Zha15b]. The trace formula we proposed in this paper, with obvious modifications,

can be used to study the general case. We will return to this in the future work.

For simplicity we assume for the rest of this paper that A = Mn(D) where D is a (possibly split)

quaternion algebra over F containing E. Thus G = GLn(D) and H = ResE/F GLn,E .
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Theorem 1.4. Assume that E/F is split at all archimedean places, π0,E is cuspidal, and there is

at least one place v1 such that πv1 is elliptic. Then part (i) of Conjecture 1.1 holds.

Here the ellipticity is relative to the subgroup H and its precise meaning can be found in Sub-

section 3.3. By Proposition 3.4, all supercuspidal representations are elliptic.

The local part of this theorem, i.e. the self-duality of π and determining the local root numbers,

confirms the conjecture of Prasad and Takloo-Bighash in many cases. The general case of the

conjecture will be treated in a subsequent paper, based on the results we obtain here.

In the converse direction, because of the lack of certain representation theoretic results, our

theorem is less general than the above one.

Theorem 1.5. Assume that n is odd, E/F is split at all archimedean places and that π0 satisfy

the conditions in part (ii) of Conjecture 1.1. Assume π0,E is cuspidal. Let Σ be a finite set of

finite places of F containing dyadic places, such that if v 6∈ Σ, then Ev/Fv, π0,v and χv are all

unramified. Assume that

(1) if v ∈ Σ, then either v splits in E or π0,Ev is supercuspidal.

(2) there is at least one place v1 in Σ such that π0,Ev1
is elliptic.

Then there is a unique quaternion algebra D over F and an irreducible cuspidal representation π

of G(AF ), such that π is the Jacquet–Langlans transfer of π0 and Pχ is not identically zero on π,

i.e. part (ii) of Conjecture 1.1 holds.

Here the ellipticity is relative to subgroups of GL2n(Ev1) and the precise meaning will be ex-

plained in Subsection 3.4.

1.2. The new relative trace formula. Let v be an archimedean place of F , we let S(G(Fv)) be

the space of Schwartz functions on G(Fv), meaning the functions f such that Df is bounded

on G(Fv) for all algebraic differential operators D on G(Fv). Let S(G(AF )) be the space of

Schwartz functions on G(AF ), i.e. linear combinations of the functions of the form
∏
v fv where

fv ∈ C∞c (G(Fv)) if v is nonarchimedean and fv ∈ S(G(Fv)) is v is archimedean. Similar definitions

also applies to other groups.

To study the linear period Pχ we consider the following relative trace formulae. Let f ∈
S(G(AF )). We put

Kf (g1, g2) =

∫
Z(F )\Z(AF )

∑
y∈G(F )

f(zg−1
1 yg2)ω(z)−1dz.

Define a distribution

(1.2) J(f) =

∫∫
(Z(AF )H(F )\H(AF ))2

Kf (h1, h2)χ(h1h
−1
2 )dh1dh2.

This distribution at least formally unfolds geometrically and has a spectral expansion. Then we

obtain a relative trace formula on G(AF ). This relative trace formula is essentially the same as the

one propose in [Guo96], except that a character χ is inserted.
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We now propose a relative trace formula to study the L-function L(1
2 , π0,E⊗χ). This is the main

innovation of this paper.

Let us first recall the relative trace formula proposed by [Guo96] when χ is trivial. In this

case, let f ′ ∈ S(GL2n(AF )) and the relative trace formula results from the geometric and spectral

expansion of the distribution ∫∫ ∑
x∈GL2n(F )

f ′(h−1
1 xh2)η(h1)dh1dh2,

where the integration is over h1, h2 ∈ GLn(AF )×GLn(AF ). The spectral expansion gives both the

periods ∫
ϕ(h)dh,

∫
ϕ(h)η(h)dh,

where ϕ ∈ π0 and the domain of the integration in both cases are GLn(AF )×GLn(AF ). Thus by

the work of Friedberg and Jacquet [FJ93] on (split) linear periods these periods give rise to the

L-functions L(s, π0)L(s, π0 ⊗ η).

It is clear that such an approach cannot be generalized to arbitrary χ, simply because L(s, π0,E⊗
χ) does not factorize in general. An alternative approach is needed. Assume the central character

of π0 is ω. In the case of n = 1, Jacquet [Jac87] proposed the following. Assume n = 1. Let

f ′ ∈ S(GL2(AE)) be a test function. Then consider∫∫ ∑
x∈GL2(E)

f ′(h−1
1 xh2)χ(h1)(ωη)(λ(h2))dh1dh2.

Here the integration is over h1 =

(
a

1

)
, a ∈ E×\A×E , h2 is in GU(1, 1) where GU(1, 1) stands

for the quasisplit similitude unitary group in two variables, and λ is the similitude character.

Jacquet’s idea is as follows. The integration over h1 gives the central L-value, and the period

over GU(1, 1) ensures that the representations we consider on GL2(AE) are all base change from

GL2(AF ). Jacquet (re)proved Conjecture 1.1 in the case n = 1 based on this relative trace formula.

Thus for general n a natural idea is to extend the relative trace formulae in [Jac87], i.e.

(1.3)

∫∫ ∑
x∈GL2n(E)

f ′(h−1
1 xh2)χ̃(h1)(ωη)(λ(h2))dh1dh2,

with h1 = (h11, h12) ∈ GLn(AE)×GLn(AE), χ̃(h1) = χ(h11h
−1
12 ), and h2 ∈ GU(n, n)(AF ). This is

very natural and was indeed our first attempt. But it does not seem to be the correct approach and

we eventually abandoned it for the following reason. The stabilizers in the geometric expansions of

the distributions (1.2) and (1.3) are very different, one being tori in GLn(F ) and the other being

tori in the unitary groups. On the philosophical level it is not expected that two trace formulae

can be compared unless the stabilizers from their geometric side are closely related, e.g. they are

isomorphic or at least one of them is trivial. After all, in the comparison of the trace formulae,
4



we need to equate the volume of these stabilizers. Therefore we do not expect a nice comparison

between the geometric expansions of the distributions (1.2) and (1.3).

We take an alternative approach in this paper. The starting point is the following key observa-

tion. Let Π be an irreducible cuspidal automorphic representation of GL2n(AE) and ϕ ∈ Π. The

integration of ϕ over GLn(AE)×GLn(AE) does not merely tell us something about L(1
2 ,Π⊗χ), but

also about the self-duality of Π. Let us introduction some notation. Let H ′ = ResE/F (GLn×GLn),

and χH′ is a character of H ′ sending h1 = (h11, h12) to χ(h11h12). Indeed if∫
ϕ(h1)χH′(h1)dh1 6= 0

where the integration is over H ′, by [FJ93] we have L(1
2 ,Π ⊗ χ) 6= 0 and L(s,Π,∧2 ⊗ χχc) has a

pole at s = 1 where χc(g) = χ(g). The later implies that Π∨ ' Π ⊗ χχc. What we need in the

relative trace formula is to use the second integral over h2 to separate those Π with Π ' Πc. Under

the condition that Π∨ ' Π ⊗ χχc, this is equivalent to Π∨ ⊗ χ−1 ' Πc ⊗ χc where Πc(g) = Π(g),

and this later condition can be detected using the period integral of Flicker and Rallis, i.e. the

integration ∫
ϕ(h2)χη(h2)dh2

where h2 ∈ GL2n(AF ). Thus our new distribution on GL2n(AE) reads the following∫∫ ∑
x∈GL2n(E)

f ′(h−1
1 xh2)χH′(h1)(χη)−1(h2)dh1dh2,

where h1 ∈ GLn(AE) × GLn(AE) and h2 ∈ GL2n(AF ). The geometric and spectral expansions of

this distribution give the relative trace formula on GL2n(AE). The stabilizer of any (relatively)

regular semisimple orbit is a torus in GLn(F ) of the form
∏
i ResFi/F GL1, and hence it matches

the stabilizers arising from the distribution (1.2).

The majority of this paper compares the elliptic part of this relative trace formula with the

one on G(AF ). Our key local results are the relevant fundamental lemma and transfer of orbital

integrals. With the recent technique from [BPLZZ21] to isolate cuspidal spectra, these local results

lead to the main theorems. To remove the unnecessary conditions in those theorems, one would

need to compare the full relative trace formulae, not just the elliptic part. Nevertheless the current

comparison is sufficient for the purpose of solving the local problems, i.e. the conjecture of Prasad

and Takloo-Bighash. The conjecture of Prasad and Takloo-Bighash in turn appears to be an

indispensable ingredient in the comparison of the full relative trace formulae. We hope to address

these questions in a future work.

Let us end the discussion by mentioning that the work of Getz and Wambach [GW14, p. 5–6]

speculates a general principle which suggests a comparison of relative trace formulae for period

integrals along symmetric subgroups. Our new relative trace formulae, apart from the characters,
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are compatible with this general principle. In the notation of [GW14], their H is GLn,F , G is GLn,E

and the involution θ is the conjugation by

(
1n

−1n

)
.

1.3. Notation and Convention. Throughout this paper we keep the following notation and

convention.

If X is a set, we denote by 1X the characteristic function of it.

If G is a group and f is a function on G then we put f∨(g) = f(g−1).

When a group A acts on a set X and x ∈ X we always denote by Ax the stabilizer of x in A.

The n× n identity matrix is denoted by 1n, or simply 1 when the size of the matrix is clear.

If F is a number field, we put F∞ =
∏
v|∞ Fv.

Let E/F is be quadratic field extension. The nontrivial Galois involution is denoted by ·. By a

twisted conjugation by g ∈ GLn(E), we mean the map x 7→ gxg−1. The stabilizer of x in GLn,E

under this twisted conjugation is denoted by (GLn,E)x,twisted. This is an algebraic group over F

and

(GLn,E)x,twisted(F ) = GLn(E)x,twisted = {g ∈ GLn(E) | gxg−1 = x}.

We define N : GLn(E)→ GLn(E) the norm map Ng = gg. The image of the norm map is denoted

by N GLn(E).

Let D be a quaternion algebra over F with a fixed embedding E → D. We fix an element

ε ∈ NE× or ε ∈ F×\NE× depending on whether D split or ramifies. The group GLn(D) is

realized as a subgroup of GL2n(E) consisting of elements of the form(
A εB

B A

)
, A,B ∈Mn(E),

We let θ : GL2n(E)→ GL2n(E) be the involution

g 7→ θ(g) =

(
1n

−1n

)
g

(
1n

−1n

)
.

1.4. Acknowledgement. HX is partially supported by the NSF grant DMS #1901862 and DMS

#2154352. WZ is partially supported by the NSF grant DMS #1901642.

2. Relative trace formulae: the geometric side

2.1. Geometric side. Let E/F be a quadratic extension of number fields, and D a (possibly

split) quaternion algebra over F containing E. Let G = GLn(D), Z = GL1,F the center of G, and

H = ResE/F GLn,E .

Let us recall from the introduction that we have the following relative trace formula on G(AF ).

Let f ∈ S(G(AF )). We put

Kf (g1, g2) =

∫
Z(F )\Z(AF )

∑
y∈G(F )

f(zg−1
1 yg2)ω(z)−1dz.
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Define a distribution

J(f) =

∫∫
(Z(AF )H(F )\H(AF ))2

Kf (h1, h2)χ(h1h
−1
2 )dh1dh2.

We consider the H × H action on G by (h1, h2) · y = h−1
1 yh2. An element y ∈ G(F ) is called

regular semisimple if the stabilizer (H ×H)y is a torus of dimension n over F . It is called elliptic

if in addition that this torus is anisotropic modulo the center of G. Let G(F )reg and G(F )ell be

the subsets of regular semisimple and elliptic elements. These definitions also apply to elements in

G(Fv) where v is a place of F .

Assume that f = ⊗fv is decomposable and there is one nonsplit place v1 of F such that fv1 is

supported in the regular elliptic locus. Then we have

(2.1) J(f) =
∑

y∈H(F )\G(F )ell/H(F )

vol((H ×H)y)O
G(y, f),

where

OG(y, f) =

∫
(H×H)y(AF )\(H×H)(AF )

f(h−1
1 yh2)χ(h−1

1 h2)−1dh1dh2.

In these expressions we fix compatible measures on Z(AF )\(H ×H)y(AF ), Z(AF )\(H ×H)(AF )

and (H ×H)y(AF )\(H ×H)(AF ) for each y ∈ G(F )ell and vol((H ×H)y) stands for the volume of

Z(AF )(H ×H)y(F )\(H ×H)(AF ).

This integral is absolutely convergent for all regular semisimple y ∈ G(F ). Since the test function

f is not compactly supported, the absolute convergence of (2.1) needs explanation. This will be

given in Appendix A.

For any place v of F , we define similarly the local orbital integrals, except we integrate over

(H ×H)(Fv) instead.

The orbital integral can be simplified as follows. If g ∈ GL2n we define an involution

θ(g) =

(
1n

−1n

)
g

(
1n

−1n

)
.

Then H is the group of fixed point of θ. We introduce the symmetric space

S = {gθ(g)−1 | g ∈ G}

and then H acts on S by conjugation. Put

f̃(gθ(g)−1) =

∫
H(AF )

f(gh)χ(gh)−1dh.

Then f̃ ∈ S(S(AF )) and

OG(g, f) = OS(s, f̃) =

∫
Hs(AF )\H(AF )

f̃(h−1sh)dh, s = gθ(g)−1.

For any place v of F , the local orbital integrals can be simplified in a similar way.
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We introduce another relative trace formula with which (2.1) will be compared. While the

distribution J does not differ much from those in [Guo96], this relative trace formula is the main

point of innovation of the present paper.

Let G′ = ResE/F GL2n, H ′ = ResE/F (GLn×GLn) embedded in G′ as diagonal blocks, and

H ′′ = GL2n,F . Let Z ′ ' GL1,F embedded in G′ diagonally. Let f ′ ∈ S(G′(AE)) and

Kf ′(g1, g2) =

∫
Z′(E)\Z′(AE)

∑
γ∈G′(F )

f ′(g−1
1 zγg2)ω(zz)−1dz.

For h =

(
h1

h2

)
∈ H ′(AF ) with h1, h2 ∈ (ResE/F GLn)(AF ), we put χH′(h) = χ(h1h2).

Consider the distribution

I(f ′) =

∫
Z′(AE)H′(F )\H′(AE)

∫
Z′(AF )H′′(F )\H′′(AF )

Kf ′ (h, g)χH′(h)(χη)−1(g)dhdg.

The motivation for introducing this distribution will be clear when we discuss its spectral expansion

in Subsection 3.2.

We say that an element x ∈ G′(F ) is regular semisimple if the stabilizer (H ′×H ′′)x is a torus of

dimension n over F . It is elliptic if in addition (H ′ ×H ′′)x is an elliptic torus. Let G′(F )ell be the

subset of elliptic elements. These definitions also apply to elements in G′(Fv) where v is a place of

F .

Assume that f ′ = ⊗f ′v is decomposable and there is one nonsplit place v1 of F such that f ′v1 is

supported in the regular elliptic locus. We fix a character η̃ : E×\A×E → C× such that η̃|A×F = η.

Then as usual the distribution I unfolds to orbital integrals, i.e. we have

(2.2) I(f ′) =
∑

x∈H′(F )\G′(F )ell/H′′(F )

vol((H ′ ×H ′′)x)OG
′
(x, f ′),

where

OG
′
(x, f ′) =

∫
(H′×H′′)x(AF )\(H′×H′′)(AF )

f ′(h−1xh′′)(χH′χ
−1η̃−1)(h)(χη̃)−1(h−1xh′′)dhdh′′.

We fix compatible measures on Z ′(AF )\(H ′ × H ′′)x(AF ), Z ′(AF )\(H ′ × H ′′)(AF ) and (H ′ ×
H ′′)x(AF )\(H ′ ×H ′′)(AF ) for each x ∈ G′(F )ell and vol((H ′ ×H ′′)x) stands for the volume of

Z ′(AF )(H ′ ×H ′′)x(F )\(H ′ ×H ′′)(AF ).

This integral is absolutely convergent for all regular semisimple x. Since the test function f ′ is

not compactly supported, the absolute convergence of (2.2) needs explanation. This will be given

in the Appendix A.

If v is a place of F , then we define similarly the local orbital integral, except we integrate over

(H ′ ×H ′′)(Fv) instead.

The orbital integral can be simplified as follows. Introduce the symmetric space

S′ = {ss = 1 | s ∈ G′} ' G′/H ′′,
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on which H ′ acts by twisted conjugation. Put

(2.3) f̃ ′(gg−1) =

∫
H′′(AF )

f ′(gh)(χη̃)−1(gh)dh.

Then f̃ ′ ∈ S(S′(AF )). We have

(2.4) OG
′
(g, f ′) = OS

′
(s′, f̃ ′) =

∫
H′
s′ (AF )\H′(AF )

f̃ ′(h−1s′h)(χH′χ
−1η̃−1)(h)dh, s′ = gg−1.

If v is a place of F , the local orbital integral can be defined and simplified in a similar way.

An element s′ ∈ S′(F ) is regular semisimple if H ′s′ is a torus of dimension n. It is in addition

elliptic if H ′s′ is an anisotropic torus modulo the split center of G′. If s′ = gg−1, g ∈ G′(F ), then

s′ is regular semisimple or elliptic if g is so in G′(F ). Let S′(F )reg and S′(F )ell be the subsets of

regular semisimple and elliptic elements respectively.

2.2. Matching of test functions. Recall that we fixed ε ∈ NE× (resp. F×\NE×) if D splits

(resp. ramifies) and the group G is realized as a subgroup of GL2n(E) consisting of matrices of the

form (
α εβ

β α

)
, α, β ∈Mn(E).

Then H consists of matrices of the form

(
α

α

)
, α ∈ GLn(E).

Let x ∈ G′(F ) and y ∈ G(F ) be regular semisimple elements. Write

xx−1 =

(
α1 α2

α3 α4

)
∈ S′(F ), yθ(y)−1 =

(
β1 β2

β3 β4

)
∈ S(F ),

where αi, βi ∈ Mn(E). We will prove that αi’s and βi’s are all invertible. We say that x and y

match if 2α1α1 − 1 and β1 have the same characteristic polynomial. The general form of such

matching comes from the consideration of categorical quotients, cf. Section 5, and the exact form

of the matching is only obtained during the attempt to prove the fundamental lemma, cf. Section 7.

Matching of regular semisimple elements will be studied in detail in Section 6, and it turns out

that not all regular semisimple x ∈ G′(F ) matches a regular semisimple y ∈ G(F ), and vice versa.

This is a new feature of the present relative trace formula at hand. The element x matches some

y (resp. y matches some x) if

1− (α1α1)−1 ∈ εN GLn(E), resp.
1

2
(β1 + 1) ∈ N GLn(E).

The matching of regular semisimple elements also applies to the situation of Fv where v is a place

of F . We note that there is a neighbourhood of 1 ∈ G(Fv) such that every regular semisimple y in

this neighbourhood matches some x ∈ G′(Fv). This is because there is a small neighbourhood of

1 ∈ GLn(Ev) such that every element in this neighbourhood is a norm.

If x ∈ G′(Fv) and y ∈ G(Fv) match, we will see in Subsection 6.1 that the stabilizers (H ′ ×
H ′′)x(Fv) and (H ×H)y(Fv) are isomorphic and we fix such an isomorphism. We fix measures on
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these stabilizers which are identified under the fixed isomorphism. If x ∈ G′(F ) and y ∈ G(F )

match, then they match at every place of F . With the above fixed measures on their stabilizers we

have

vol((H ′ ×H ′′)x) = vol((H ×H)y).

Fix an element τ ∈ E× such that τ = −τ . For each place v of F , we define transfer factors on

G′ and G:

κG
′

v (x) = χv(α4)η̃v(τα2), κGv (y) = χv(y1), y−1 =

(
y1 εy2

y2 y1

)
.(2.5)

For each place v of F , we define

S(G′(Fv))0 = {f ′ ∈ S(G′(Fv)) | OG
′
(x, f ′v) = 0 for all x not matching any y ∈ G(Fv)},

and S(G(Fv))0 in a similar way. By definition, two test functions f ′v ∈ S(G′(Fv))0 and fv ∈
S(G(Fv))0 match if and only if

κG
′

v (x)OG
′
(x, f ′v) = κGv (y)OG(y, fv)

for all matching regular semisimple x ∈ G′(Fv) and y ∈ G(Fv). Two test functions f ′ = ⊗f ′v ∈
S(G′(AF )) and f = ⊗fv ∈ S(G(AF )) match if f ′v ∈ S(G′(Fv))0 and fv ∈ S(G(Fv))0 and they

match for all place v of F .

The following are the main theorems concerning the geometric side of the trace formulae. They

will be proved in Sections 6 and 7 respectively.

Theorem 2.1. Assume that v is nonarchimedean and nonsplit. For any f ′v ∈ S(G′(Fv))0 there is

an fv ∈ S(G(Fv))0 that matches it, and vice versa.

Theorem 2.2. Let v be a nonsplit nonarchimedean odd place in F . Assume the quaternion algebra

D splits at v and χv is unramified at v. Let oFv be the ring of integers of Fv. We pick the measure

on G′(Fv) and G(Fv) such that the volumes of G′(ov) and G(ov) are 1. Then 1G′(oFv ) and 1G(oFv )

match.

2.3. Matching at split places. The goal of this subsection is to explain the matching of test

functions at the split places, which can be made explicit.

If v is a split place of F . Then G(Fv) = GL2n(Fv) and G′(Fv) = GL2n(Fv)×GL2n(Fv). We fix a

measure on GL2n(Fv) and thus we have measures on G′(Fv) and on G(Fv) under this identification.

The character ηv is trivial so η̃v takes the form (η0, η
−1
0 ) where η0 is a character of F×v . The character

χv is of the form (χ1, χ2) where χ1, χ2 are characters of F×v . Regular semisimple elements y ∈ G(Fv)

and (x1, x2) ∈ G′(Fv) matches if y = x1x
−1
2 . Let f ′ = (f ′1, f

′
2) ∈ S(G′(Fv)) ' S(G(Fv))⊗S(G(Fv))

and put

(2.6) f(g) =

∫
GL2n(Fv)

f ′1(gh)f ′2(h)χ−1
1 (h)χ−1

2 (h)dg, g ∈ GL2n(Fv).

10



Lemma 2.3. The functions f ′ and f match.

Proof. We write

x1x
−1
2 =

(
A1 B1

C1 D1

)
, x2x

−1
1 =

(
A2 B2

C2 D2

)
.

A little computation gives that the orbital integral κG
′
((x1, x2))OG

′(Fv)((x1, x2), f ′) equals

(2.7)

η0(x1x
−1
2 )−1η0(−B1B

−1
2 )χ1(D1)χ2(D2)χ1(x1x

−1
2 )−1

∫
f

(a1

b1

)−1

x1x
−1
2

(
a2

b2

)χ1(a1a
−1
2 )χ2(b1b

−1
2 )da1da2db1db2.

When (x1, x2) is regular semisimple, A2 is invertible, and thus(
A2 B2

C2 D2

)
=

(
1

C2A
−1
2 1

)(
A2 B2

D2 − C2A
−1
2 B2

)
.

Thus D1 = (D2 − C2A
−1
2 B2)−1 and (detx1x

−1
2 )−1 = detA2 det(D2 − C2A

−1
2 B2). It follows that

χ1(D1)χ2(D2)χ1(x1x
−1
2 )−1 = χ1(A2)χ2(D2). Similarly we have η0(x1x

−1
2 ) = η0(−B1B

−1
2 ). In par-

ticular we note that κG
′
((x1, x2))OG

′(Fv)((x1, x2), f ′) is independent of the choice of η̃. A straight-

forward computation then gives that (2.7) equals

κG(y)OG(y, f),

when y = x1x
−1
2 . �

When we speak of the matching of test functions f ′ and f at split places, we always mean that

f ′ and f are related in this explicit way.

We observe that there is an involution on S(G(Fv)) given by f 7→ f∨χ1χ2. Define

S(G(Fv))
+ = {f ∈ S(G(Fv)) | f∨χ1χ2 = f}, S(G′(Fv))

+ = S(G(Fv))
+ ⊗ S(G(Fv))

+.

There is a base change homomorphism

bcv : S(G′(Fv)) ' S(G(Fv))⊗ S(G(Fv))→ S(G(Fv)),

which is given by the usual multiplication (i.e. convolution) on S(G(Fv)). It maps S(G′(Fv))
+ to

S(G(Fv))
+, cf. [AC89, Chapter 1, Section 5].

Lemma 2.4. If f ′ ∈ S(G′(Fv))
+ then f ′ and bcv(f

′) match.

Proof. This is a direct consequence of Lemma 2.3 and the definition of S(G′(Fv))
+. �

Let us assume further that v is an odd unramified (split) finite place, and χ1, χ2 are unramified

characters of F×v . Let Kv = GL2n(oFv) and Hv = C[Kv\G(Fv)/Kv] be the spherical Hecke algebra

of G(Fv). Then the involution f 7→ f∨χ1χ2 reduces to an involution on Hv. Let H±v be the ±1-

eigenspaces of this involution. Similarly let HE,v be the spherical Hecke algebra of G′(Fv), which

is identified with Hv ⊗Hv.
11



Lemma 2.5. If

f ′v = (f ′1, f
′
2) ∈ (H−v ⊗H+

v )⊕ (H+
v ⊗H−v )⊕ (H−v ⊗H−v ),

then we have

OG
′(Fv)((x1, x2), f ′) = 0, OG(Fv)(y,bcv(f

′)) = 0.

Proof. From the explicit expressions (2.7), it suffices to check that if f ∈ H−v , then

(2.8)

∫
GLn(Fv)×GLn(Fv)

f

((
a

b

)
g

)
χ1(a)−1χ2(b)−1dadb = 0

for all g ∈ G(Fv). By [Off11, Proposition 3.1], every double coset H(Fv)\G(Fv)/Kv is represented

by an element g such that

g−1θ(g) =

(
Λ

−Λ−1

)
, Λ =

 $λ1

. .
.

$λn

 , λ1 ≥ · · · ≥ λn ≥ 0.

where $ is a uniformizer in Fv. Therefore to see (2.8) it is enough to assume that g is of this form.

We may further assume that g take the shape g =

(
A B

C D

)
, and A,D are diagonal while B,C

consist of only anti-diagonal entries, and det

(
a b

c d

)
= 1, where a, b, c, d are entries of g at (i, i),

(i, n− i+ 1), (n− i+ 1, i) and (n− i+ 1, n− i+ 1) respectively. With this g it is straightforward

to see that

(2.9)

(
1

−1

)
tg−1 = g

(
1

−1

)
.

Note that since f ∈ Hv we have f(tg) = f(g) for all g. Now replacing f by −f∨χ1χ2 in (2.8), we

see that

(2.8) = −
∫
f

t(
a

b

)−1

tg−1

χ2(a)χ1(b)dadb

= −
∫
f

t(
a

b

)−1(
−1

1

)
g

(
1

−1

)χ2(a)χ1(b)dadb.

Make change of variables a 7→ tb−1 and b 7→ ta−1, and use the fact that f ∈ Hv we see that the last

integral equals −(2.8), which implies (2.8) equals zero. �

Proposition 2.6. The function f ′ ∈ HE,v and f = bcv(f
′) ∈ Hv match.

Proof. By Lemma 2.5 above, the assertion holds if f ′v = (f ′1, f
′
2) ∈ (H−v ⊗H+

v )⊕(H+
v ⊗H−v )⊕(H−v ⊗

H−v ). If f ′v ∈ H+
v ⊗H+

v then the map bcv and the map (2.6) coincide. �
12



3. Relative trace formulae: the spectral side

3.1. Linear periods and Shalika models. We recall some results on (split) linear periods and

Shalika models on GL2n(AE) from [FJ93,JS90]. In this subsection we temporarily use the following

notation. Let Q be the Shalika subgroup of GL2n(E) consisting of matrices of the form(
g

g

)(
1 x

1

)
, g ∈ GLn(E), x ∈Mn(E).

Let ψ : E\AE → C× be a nontrivial additive character and χ, ξ : E×\A×E → C× be two characters.

Define a character θ : Q(E)\Q(AE)→ C× by

θ

((
g

g

)(
1 x

1

))
= ψ(Trx)ξ(det g).

Let Π be an irreducible cuspidal automorphic representation of GL2n(AE) with central character

ω, and assume that ξnω = 1.

We define global Shalika functional on Π

λ(ϕ) =

∫
A×EQ(E)\Q(AE)

ϕ(s)θ(s)ds, ϕ ∈ Π.

By [JS90, Section 8, Theorem 1], the Shalika functional on Π is not identically zero if and only if

L(s,Π,∧2 ⊗ ξ) has a simple pole at s = 1. If this is the case, for ϕ ∈ Π we put

Vϕ(g) = λ(Π(g)ϕ), g ∈ GL2n(AE).

Following [FJ93] we consider the integral

ZFJ(s, ϕ, χ, ξ) =

∫
ϕ

((
h1

h2

))
|deth1h

−1
2 |

s− 1
2χ(deth1h

−1
2 )ξ(deth2)dh1dh2,

Here the integration is over

(h1, h2) ∈ A×E(GLn(E)×GLn(E))\(GLn(AE)×GLn(AE))

and A×E stands for the center of GL2n(AE). The integral is convergent for all s ∈ C. By [FJ93,

Proposition 2.2] this integral is not identically zero only if the Shalika function on Π is not identically

zero. Assume that this is the case. Then by [FJ93, Proposition 2.3] when Re s is sufficiently large

this integral unfolds to ∫
GLn(AE)

Vϕ

((
g

1

))
χ(det g)|det g|s−

1
2 dg.

By [FJ93, Theorem 4.1] this integral equals a holomorphic multiple of L(s,Π ⊗ χ), and there is

a choice of ϕ such that it equals this L-function. Specializing to the point s = 1
2 , we obtain the

following proposition.

Proposition 3.1. We have ZFJ(1
2 , ϕ, χ, ξ) 6= 0 for some ϕ ∈ Π if and only if L(s,Π,∧2 ⊗ ξ) has a

simple pole at s = 1 and L(1
2 ,Π⊗ χ) 6= 0.
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Let us now switch to the local situation. Let v be a place of E. Define the character θv : Q(Ev)→
C× the same way as the global case. By [CS20], the space

HomQ(Ev)(Πv ⊗ θv,C)

is at most one dimensional. Assume that it is one dimensional and λv is a nonzero element. For

any ϕv ∈ Πv put

Vϕv(g) = λ(Πv(g)ϕv), g ∈ GL2n(Ev),

and

Vv = {Vϕv | ϕv ∈ Πv}.

The space Vv is called the local Shalika model of Πv. As in [FJ93, Section 3] we define

ZFJ
v (s, Vv, χv) =

∫
GLn(Fv)

Vv

((
g

1

))
χv(g)|det g|s−

1
2 dg.

Here we note that this implicitly depends on ψv and ξv through the Shalika model. Then by [FJ93,

Proposition 3.1], it is a holomorphic multiple of L(s,Πv ⊗ χv) and there is a Vv ∈ Vv such that it

equals this local L-function. Moreover by [FJ93, Proposition 3.3] there is a functional equation

γ(s,Πv ⊗ χv, ψv)ZFJ
v (s, Vv, χv) = ZFJ

v (1− s, Ṽv, χ−1
v ),

where

Ṽv(g) = Vv

((
1

−1

)
tg−1

)
,

and Ṽv belong to the Shalika model of the contragredient of π (defined using the characters χ−1
v

and ψ−1
v ). Specializing to s = 1

2 we conclude that

(3.1) ε(Πv ⊗ χv, ψv)χv(−1)nZFJ
v (

1

2
, Vv, χv) = ZFJ

v (
1

2
, Ṽv, χ

−1
v ),

where ε(Πv ⊗ χv, ψv) is the local root number of Πv ⊗ χv. Note that this is not exactly the same

as [FJ93, Proposition 3.3] (there is an extra factor χv(−1)n). This is due to the fact that the

function Ṽv in [FJ93, Proposition 3.3] is defined by left multiplication by

(
1

1

)
in our definition

it is

(
1

−1

)
.

3.2. Functoriality. We return to the setup and notation of Section 2. Let Π be an irreducible

cuspidal automorphic representation of G′(AF ). We define Π∨ to be the dual of Π, and Πc to be the

Galois conjugate (relative to E/F ) of Π, i.e. the automorphic representation whose space is given

by {ϕ(g) | ϕ ∈ Π}. Then it is well-known that Πc ' Π if and only if Π = πE for some cuspidal

automorphic representation π of GL2n(AF ), cf. [AC89, Chapter 3, Theorem 4.2 and 5.1].
14



We apply the results recalled the previous subsection to the current situation. Put

(3.2) P ′χ(ϕ) =

∫
Z′(AF )H′(F )\H′(AF )

ϕ

((
h1

h2

))
χ(h1h2)dh1dh2

Then by Proposition 3.1, applied to the case ξ = χχc, the linear form P ′χ is not identically zero

if and only if L(1
2 ,Π ⊗ χ) 6= 0 and L(s,Π,∧2 ⊗ χχc) has a pole at s = 1. The later implies that

Π∨ ' Π⊗ χχc.
We also consider the Flicker–Rallis period of Π given by

P ′′χη(ϕ) =

∫
Z2n(AF )H′′(F )\H′′(AF )

ϕ(h)(χη)(h)dh.

It is not identically zero if and only if the Asai L-function L(s,Π ⊗ χ,As−) has a pole at s = 1,

cf. [Kab04]. Note that this implies that Π∨ ⊗ χ−1 ' Πc ⊗ χc.

Lemma 3.2. If neither of P ′χ and P ′′χη is identically zero, then there is an irreducible cuspidal

automorphic representation π of GL2n(AF ) such that Π = πE. Moreover, L(1
2 ,Π ⊗ χ) 6= 0, and

L(s, π,∧2 ⊗ χ|A×F ) has a simple pole at s = 1.

Proof. The existence of π follows from the above discussion. To prove the second assertion, let us

observe that

L(s,Π⊗ χ,As−) = L(s, π,Sym2⊗χ|A×F η)L(s, π,∧2 ⊗ χ|A×F ).

Indeed this can be checked place by place for almost all places of F . If v is split in E, then the

equality clearly holds. Assume v is inert and Πv (and hence πv) is unramified. Let qv be the

cardinality of the residue field of F at v. Let β1, · · · , β2n be the Satake parameters of πv, and

γ = χv($v) where $v is the uniformizer at v. Then the Satake parameters of Πv are β2
1 , · · · , β2

2n.

Thus the left hand side equals∏
1≤i≤2n

(1 + β2
i γq
−s
v )−1

∏
1≤i<j≤2n

(1− β2
i β

2
j γ

2q−2s
v )−1.

The right hand side equals∏
1≤i≤j≤2n

(1 + βiβjγq
−s
v )−1

∏
1≤i<j≤2n

(1− βiβjγq−sv )−1.

Thus the desired equality holds at the place v.

Similar we also have

L(s,Π,∧2 ⊗ χχc) = L(s, π,∧2 ⊗ χ|A×F )L(s, π,∧2 ⊗ χ|A×F η).

If L(s, π,∧2 ⊗ χ|A×F ) is holomorphic at s = 1, then both

L(s, π,Sym2⊗χ|A×F η), L(s, π,∧2 ⊗ χ|A×F η)

have a pole at s = 1, which implies that

L(s, π × πχ|A×F η)
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has at least a double pole at s = 1, which is not possible. This proves the final assertion. �

3.3. Local spherical charaters. Let v be a nonarchimedean nonsplit place. Let πv be an irre-

ducible unitary representation of G(Fv). According to [Lu], the space HomH(Fv)(πv ⊗ χv,C) is at

most one dimensional. We assume that it is one dimensional and we fix a nonzero element ` in it.

Let f ∈ S(G(Fv)) and we consider the spherical character

Jπv(f) =
∑
φ

`(πv(f)φ)`(φ)

where the sum runs over an orthonormal basis of π. A test functions of the form f = f1 ∗ f∨1 is

called of positive type.

Lemma 3.3. There is a positive type f ∈ S(G(Fv))0 such that f is supported in a sufficiently small

neighbourhood of 1 ∈ G(Fv) and Jπv(f) > 0.

Proof. Choose φ ∈ πv such that `(φ) 6= 0. Let f1 ∈ S(G(Fv)) be the characteristic function of

a small open compact subgroup, then `(π(f1)φ) 6= 0. Put f = f1 ∗ f∨1 . Then f is supported in

a sufficiently small neighbourhood of 1 ∈ G(Fv) and thus f ∈ S(G(Fv))0, because every regular

semisimple element in the support of f matches some element in G′(Fv). Moreover we have

Jπv(f) =
∑
φ

`(πv(f1)φ)`(πv(f1)φ).

Each term in the sum is nonnegative and there is at least one nonzero term. Therefore Jπv(f) >

0. �

By [Guo98], Jπv is represented by a locally integrable function Θπv on G(Fv), which is locally

constant on the regular semisimple locus, and which satisfies the invariance property Θπv(h1gh2) =

χv(h1h2)Θπ(g). We say that πv is H(Fv)-elliptic Θπv(y) 6= 0 for some elliptic regular semisimple

y ∈ G(Fv) and y matches some x ∈ G′(Fv).

Proposition 3.4. If πv is supercuspidal and HomH(Fv)(πv ⊗χv,C) 6= 0, then πv is H(Fv)-elliptic.

The argument is standard and very close to the classical theory of Harish-Chandra. The main

part of the proof has also been worked out in a slightly different setting in [Xue22]. A detailed

proof is quite long, and it produces a lot of repetitions from the literature and deviates significantly

from the goal of this paper. So we will merely sketch the argument in Appendix B.

3.4. Involution. We need to consider the local spherical characters arising from the distribution

IΠ. Let us fix a nonsplit nonarchimedean place v. Then we have

HomH′(Fv)(Πv ⊗ χH′,v,C) 6= 0, HomH′′(Fv)(Πv ⊗ χvηv,C) 6= 0.
16



We let `′ and `′′ be nonzero elements in these Hom-spaces respectively. Define the local spherical

character

IΠv(f
′) =

∑
W

`′(Πv(f
′)W )`′′(W ), f ′ ∈ S(G′(Fv)),

where W ranges over an orthonormal basis of Πv.

We say that IΠv is elliptic if there is an f ′ supported in the elliptic locus of G′(Fv) such that

IΠv(f
′) 6= 0. We expect that all supercuspidal representations are elliptic. We will address it in a

subsequent paper.

Let f ′ ∈ S(G′(Fv)). Put

(3.3) f ′†(g) = f ′(tg−1)(χvχ
c
v)(g), g ∈ G′(Fv).

Let ψv be a nontrivial additive character of Ev trivial on Fv. Since Π∨v ⊗ χ−1
v ' Πc

v ⊗ χcv, the

local root number ε(Πv ⊗ χv, ψv) = ±1 and is independent of ψv. We denote it by ε(Πv ⊗ χv).

Lemma 3.5. For any f ′ ∈ S(G′(Fv)) we have

IΠv(f
′†) = χv(−1)nε(Πv ⊗ χv)IΠv(f

′).

Proof. To prove this lemma, we need to choose `′ and `′′ more carefully. Since different choices

differ only by a constant, the validity of the lemma is independent of such choices.

Let W be the Whittaker model of Πv (defined by the character ψv) and V be the Shalika model

of Πv defined by the characters ψv and χvχ
c
v. We fix an isomorphism

W → V, W 7→ φW .

We also denote by W̃ and Ṽ the Whittaker model and Shalika model of π∨, defined using the

characters ψ−1
v and ψ−1

v , (χvχ
c
v)
−1 respectively. We also fix an isomorphism

W̃ → Ṽ, W 7→ φW .

For any function α on G′(Fv) we temporarily put

α̃(g) = α

((
1

−1

)
tg−1

)
.

Then both

W 7→ φW , W 7→ φ̃
W̃

are isomorphisms between W and V, and hence they differ by a constant. By rescaling the isomor-

phisms that we have fixed, we may assume that this constant equals one. It follows that for any

W ∈ W, we have

φ
W̃

= φ̃W .

For any W ∈ W we put W c(g) = W (g).
17



Recall from Subsection 3.1 that we have the integral

ZFJ(s, φ, χv) =

∫
GLn(Ev)

φ

((
a

1

))
χv(a)|det a|s−

1
2 da, φ ∈ V.

We choose `′ ∈ HomH′(Fv)(Πv ⊗ χv,C) to be the

W 7→ `′(W ) = ZFJ(
1

2
, φW , χv).

For the linear form `′′, we take it to be

`′′(W ) =

∫
N ′∩H′′(Fv)\P ′∩H′′(Fv)

W (h)(χvηv)(h)dh.

where P ′ is the mirabolic subgroup of G′ and N ′ the standard upper triangular unipotent subgroup

of G′.

If W ∈ W, since Π∨v ' Πv ⊗ (χvχ
c
v)
−1, we have W̃ c(χvχ

c
v)
−1 ∈ W. We claim that for any

g ∈ G′(Fv) we have

(3.4) χv(−1)nε(Πv ⊗ χv)`′(Πv(
tg−1)W )(χvχ

c
v)
−1(g) = `′(Πv(g)(W̃ c(χvχ

c
v)
−1)).

The right hand side equals ∫
φ

Πv(g)(W̃ c(χvχcv)−1)

((
a

1n

))
χv(a)da

which simplifies to

(χvχ
c
v)
−1(g)

∫
φ ˜Πv(tg−1)W

((
a

1n

))
χ−1
v (a)da

Using the functional equation (3.1) of ZFJ we conclude that this equals

χv(−1)nε(Πv ⊗ χv)(χvχcv)−1(g)

∫
φΠv(tg−1)W

((
a

1n

))
χv(a)da,

which is precisely the left hand side of (3.4).

We now compute IΠv(f
′†). By definition we have

`′(Πv(f
′†)W ) =

∫
G′(F )

f ′(tg−1)`′(Πv(g)W )(χvχ
c
v)(g)dg

=

∫
G′(F )

f ′(g)`′(Πv(
tg−1)W )(χvχ

c
v)(g)−1dg

= χv(−1)nε(Πv ⊗ χv)
∫
G′(F )

f ′(g)`′(Πv(g)(W̃ c(χvχ
c
v)
−1)).

Thus we have

`′(Πv(f
′†)W ) = χv(−1)nε(Πv ⊗ χv)`′(Πv(f

′)(W̃ c(χvχ
c
v)
−1)).

By [LM14, Lemma 1.1] (the main part of the proof is from [Off11, Corollary 7.2]) we have

`′′(W̃ c(χvχ
c
v)
−1) = `′′(W ).
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Thus we conclude

IΠv(f
′†) = χv(−1)nε(Πv ⊗ χv)

∑
W

`′(Πv(f
′)(W̃ c(χvχ

c
v)
−1))`′′(W̃ c(χvχcv)

−1).

When W ranges over an orthonormal basis in W, W̃ c(χvχ
c
v)
−1 ranges over an orthonormal basis

in W as well. Thus

IΠv(f
′†) = χv(−1)nε(Πv ⊗ χv)IΠv(f

′).

This proves the lemma. �

We now study the relation between matching of test functions and this involution. Let εDv =

ηv(ε) = ±1.

Lemma 3.6. Let f ′ ∈ S(G′(Fv))0 and f ∈ S(G(Fv))0 be matching test functions. Then f ′† and

ηv(−1)nεnDvf match.

Proof. Let x ∈ G′(F ) and s′ = xx−1. Then OG
′
(x, f ′) = OS

′
(s′, f̃ ′) where f̃ ′ is defined by (2.3).

Moreover a little computation shows that

OG
′
(x, f ′†) = OS

′
(
t
s′, f̃ ′).

We will see below in Section 5.1 that s′ is in the H ′-orbit of the form(
α 1

1− αα −α

)
.

So we may assume that s′ equals it. Then

t
s′ =

(
α 1− αα
1 −α

)
=

(
1− αα

1

)(
α 1

1− αα −α

)(
(1− αα)−1

1

)
.

It follows that

OS
′
(
t
s′, f̃ ′) = ηv(1− αα)OS

′
(s′, f̃ ′) = ηv(1− αα)OG

′
(x, f ′).

This in particular implies that f ′† ∈ S(G′(Fv))0.

Suppose x matches some y ∈ G(Fv). This is equivalent to 1 − (αα)−1 ∈ εN GLn(Ev), which

implies ηv(1− αα) = ηv(−1)nεnDv . Then

OG
′
(x, f ′†) = OG

′
(x, ηv(−1)nεnDvf

′)

and the lemma follows. �
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3.5. Multipliers. To analyze the spectral side without truncation, we need to make use of the

techniques from [BPLZZ21]. Recall that for any (complex) algebra A, a multiplier is linear map

µ? : A → A that commutes with both the left and right multiplication in A. The space of

multipliers of A is denoted by Mul(A).

Let v be an archimedean place of F , tv the (complexified) Cartan subalgebra of G(Fv), t
∗
v the

dual space, and ZG(Fv) ' C[tv]
Wv the center of the universal enveloping algebra of G(Fv). Write

χv = (χ1, χ2) then χ1χ2 as a character of F×v defines an element av = (av, · · · , av) ∈ t∗v.

In [BPLZZ21, Definition 2.8(3)], an algebra Mv of holomorphic functions on t∗v is introduced

(the notation in [BPLZZ21] is M]
θ(h
∗
C)W). We do not need the precise definition of this space, but

only the following property, cf. [BPLZZ21, Theorem 2.14]. There is an algebra homomorphism

Mv →Mul(S(G(Fv))), µ 7→ µ?

such that if σ is an irreducible representation of G(Fv), and f ∈ S(G(Fv)) then

σ(µ ? f) = µ(λσ)σ(f)

where λσ is the infinitesimal character of σ. Let ιv be the involution on Mv such that ιv(µ)(z) =

µ(−av − z) for all z ∈ t∗v and M+
v be the subspace consisting of elements invariant under this

involution. Recall that we have an involution f 7→ f∨χ1χ2 on S(G(Fv)) and the space S(G(Fv))
+

consisting of functions invariant under this involution. If f ∈ S(G(Fv))
+ and ιv(µ) = µ, then

µ ? f ∈ S(G(Fv))
+, i.e.

(3.5) (µ ? f)∨χ1χ2 = µ ? f.

To see this, we only need to check that the action of both sides on any irreducible representation

σ of G(Fv) coincide. The left hand side equals

(σ ⊗ χ1χ2)(µ ? f)∨ = µ(−λσ⊗χ1χ2)(σ ⊗ χ1χ2)∨(f) = µ(−av − λσ)(σ ⊗ χ1χ2)∨(f).

Since ιv(µ) = µ we have µ(−av−λσ) = µ(λσ). Moreover f∨χ1χ2 = f implies (σ⊗χ1χ2)∨(f) = σ(f).

This proves (3.5).

Put ZG =
∏
v|∞ZG(Fv), λ = ⊗v|∞λv a character of ZG, M =

∏
v|∞Mv and M+ =

∏
v|∞M+

v .

Let S be a finite set of finite places of F such that if v 6∈ S then Ev/Fv, πv and χv are all

unramified. Let T0 be the set of nonsplit finite places of F and T = T0 ∪ S. Let

HT
G =

⊗
v 6∈T
Hv =

⊗
v 6∈T

C∞c (G(oFv)\G(Fv)/G(oFv))

be the spherical Hecke algebra away from T. We fix an open compact subgroup K =
∏
v-∞Kv such

that if v 6∈ S then Kv = G(oFv).

All the above objects for G have their counterparts for G′. For each archimedean place v we

have an algebra of holomorphic functions M′v which is identified with Mv ⊗ Mv and we put

M′+v =M+
v ⊗M+

v . Moreover putM′ =
∏
v|∞Mv andM′+ =

∏
v|∞M+

v . We have S(G′(Fv))
+ =

S(G(Fv))
+ ⊗ S(G(Fv))

+, and we put S(G′(F∞))+ =
∏
v|∞ S(G′(Fv))

+. We also have the center
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of the universal enveloping algebra ZG′ which is identified with ZG ⊗ZG, and the spherical Hecke

algbra away from T

HT
G′ =

⊗
v 6∈T
HG′,v ' HT ⊗HT.

There is a base change homomorphism

bc : ZG′ ⊗HT
G′ → ZG ⊗HT

which is given by the usual multiplication in ZG and HT. We fix an open compact subgroup

K ′ =
∏
v-∞K

′
v such that if v 6∈ S then K ′v = G′(oFv).

Let λ = (λ∞, λ
∞,T) be the character of ZG ⊗HT

G attached to π, and L2
0(G(F )\G(AF )/K, ω)[λ]

be the maximal quotient of L2
0(G(F )\G(AF )/K, ω) on which ZG ⊗ HT

G acts by λ. Then λ′ =

λ ◦ bc = (λ, λ) is the character of ZG′ ⊗ HT
G′ attached πE , cf. [AC89, Chapter 1, Section 5]. We

let L2
0(G′(F )\G′(AF )/K ′, ω)[λ′] be the maximal quotient of L2

0(G′(F )\G′(AF )/K ′, ω) on which

ZG′ ⊗HT
G′ acts by λ′. We have

L2
0(G(F )\G(AF ), ω)[λ] = π ⊕ (π ⊗ η), L2

0(G′(F )\G′(AF ), ω′)[λ′] = πE .

The second equality is a direct consequence of [Ram]. The first needs a little explanation. Indeed

let σ be an irreducible component of L2
0(G(F )\G(AF ), ω)[λ]. Then the base change πE and σE to

GL2n(AE) are isobaric automorphic representations and they agree on almost all places of E of

degree one over F . Therefore πE = σE by [Ram] and in particular σE is cuspidal. Let σ0 be the

Jacquet–Langlands transfer σ to GL2n(AF ). Then by [AC89, Chapter 3, Theorem 4.2(d)], either

π0 = σ0 or π0 = σ0 ⊗ η. Since Jacquet–Langlands transfer is an injective map, we conclude that

either π = σ or π = σ ⊗ η. Our claim then follows from the fact that L2
0(G(F )\G(AF ), ω) is of

multiplicity one.

Let

bc :M′ ⊗HT
G′ = (M⊗HT

G)⊗ (M⊗HT
G)→M⊗HT

G

be the usual multiplication map.

Proposition 3.7. There are elements µ′ ∈ M′+ ⊗HT
G′ and µ = bc(µ′) ∈ M+ ⊗HT

G such that for

all f ′ ∈ S(G′(AF )) and f ∈ S(G(AF )) we have

• R(µ′ ? f ′) maps L2(G′(F )\G′(AF )/K ′, ω′) into πE,

• µ′(λ′) = µ′(λ, λ) = 1, which is equivalent to πE(µ′ ? f ′) = πE(f ′) for all f ′ ∈ S(G′(AF ))K′,

and

• R(µ ? f) maps L2(G(F )\G(AF )/K, ω) into π ⊕ (π ⊗ η),

• π(µ ? f) = π(f) and (π ⊗ η)(µ ? f) = (π ⊗ η)(f) for all f ∈ S(G(AF ))K .

Proof. Since G′ = ResE/F GL2n, there is no CAP automorphic representation of G′(AF ) in the sense

of [BPLZZ21, Definition 3.4]. By [BPLZZ21, Theorem 3.6] there is an element µ′′ ∈ M′ ⊗ HT
G′

satisfying the condition required for µ′ in the proposition.
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As M′ =
∏
w|∞Mw, for µ ∈ M′ ⊗HT

G′ we have the element ιw(µ) for each archimedean place

w of E, by applying the involution ιw only to the place w. Put

µ′ =
∏
w|∞

µ′′ιw(µ′′) ∈M′+ ⊗HT
G′ .

We claim that µ′ again satisfies conditions in the proposition. Indeed, the first condition is clear

since µ′′ already maps L2(G′(F )\G′(AF )/K ′, ω′) into πE , and moreover we have

µ′(λ) =
∏
w|∞

µ′′(λ′)ιw(µ′′)(λ′) = 1,

since πEw satisfies π∨Ew = πEw ⊗ χ1χ2 if w is above the place v of F and we write χv = (χ1, χ2),

which implies ιw(µ′′)(λ′) = µ′′(λ′) = 1.

Put µ = bc(µ′). We claim that µ satisfies the conditions in the proposition. This is equivalent to

µ(λ) = 1 and if ν = (ν∞, ν
∞,T) arises from an irreducible component σ of L2(G(F )\G(AF )/K, ω)

and µ(ν) 6= 0, then σ is cuspidal and ν = λ. By the definition of µ we have µ(ν) = µ′(ν, ν) where

(ν, ν) = ν ◦ bc is the character of the algebra ZG′ ⊗HT
G′ obtained by pulling back the character ν,

which is a character arising from the automorphic representation σE . Then µ′(ν ◦ bc) 6= 0 means

that σE is cuspidal and ν ◦ bc = λ′. Moreover µ(λ) = µ′(λ′) = 1. �

4. Proofs of the main theorems

We are now ready to prove Theorems 1.4 and 1.5, assuming Theorem 2.1 and Theorem 2.2.

4.1. Proof of Theorem 1.4. We keep the notation from the theorem and from Subsection 3.5.

First we define the global spherical characters as follows. Let π be an irreducible cuspidal auto-

morphic representation of G(AF ) and f ∈ S(G(AF )). Put

Jπ(f) =
∑
ϕ

Pχ(π(f)ϕ)Pχ(ϕ),

where ϕ runs through an orthonormal basis of π. Let Π be an irreducible cuspidal automorphic

representation of G′(AF ) and f ′ ∈ S(G′(AF )). Put

IΠ(f ′) =
∑
ϕ

P ′χ(Π(f ′)ϕ)P ′′χη(ϕ),

where again ϕ runs through an orthonormal basis of Π.

Recall that S is a finite set of finite places of F such that if v 6∈ S is finite, then Ev/Fv, πv

and χv are all unramified, T0 is the set of nonsplit finite places of F and T = T0 ∪ S. We require

the finite set S to contain the place v1. Let us now take test function f = ⊗fv ∈ S(G(AF )) and

f ′ = ⊗f ′v ∈ S(G′(AF )) as follows. If v 6∈ S and is finite, we take fv = 1G(oFv ) and f ′v = 1G′(oFv ). If

v ∈ S and v 6= v1, or v is an archimedean place, we take a positive type test function fv ∈ S(G(Fv))0

supported sufficiently close to 1, such that Jπv(fv) 6= 0. The existence of such a test function is

given by Lemma 3.3 if v is not split, and is obvious if v is split. We choose f ′v ∈ S(G′(Fv)) such

that f ′v and fv match in the sense of Lemma 2.3. If v is archimedean, since π∨v ⊗ χ1χ2 ' πv if
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χv = (χ1, χ2), we may further assume that f ′v ∈ S(G′(Fv))
+ and hence fv ∈ S(G(Fv))

+. With this

additional condition, fv = bcv(f
′
v). If v = v1, we may assume that fv1 is supported in the elliptic

locus, and this is possible by Proposition 3.4.

We have constructed multipliers µ′ ∈M′+⊗HT
G′ and µ ∈M+⊗HT

G in Proposition 3.7. The key

point is that these multipliers are in the “plus” subspaces. We now use the test functions µ′ ? f ′

and µ ? f . We claim that they still match. To see this we write f ′ = f ′T ⊗ f ′T where

f ′T ∈ S(G′(F∞))+ ⊗HT
G′ , fT ∈ S(G(F∞))+ ⊗HT

G,

and f = fT ⊗ fT similarly. The function µ′ ? f ′ (resp. µ ? f) is obtained from f ′ (resp. f) by

modifying only finite places not in T and the archimedean places. Thus f ′T and fT match (i.e. each

local components match). Moreover we have

bc(µ′ ? f ′T) = bc(µ′) ? bc(f ′T) = µ ? fT.

The last equality follows from the definition of µ and fT. It follows from Lemma 2.4 and Proposi-

tion 2.6 that µ′ ? f ′T and µ ? fT match. This proves the claim.

With this choice of the test functions, we conclude that

(4.1) IπE (f ′) = Jπ(f) + Jπ⊗η(f),

Since the functions are of positive type we conclude that Jπ(f) > 0 and Jπ⊗η(f) ≥ 0. Therefore

IπE (f ′) 6= 0 and the assertion on the L-functions follows from Lemma 3.2.

We now move to the assertions on the local components of π. Let us fix a nonsplit place v of F .

Since L(s, π0,∧2 ⊗ χv|F×v ) has a simple pole at s = 1, we conclude that the Langlands parameter

of π0,v takes value in GSp2n(C) with similitude character χv|F×v .

It remains to calculate the local root number ε(π0,E,v ⊗ χv). By Lemma 3.6, εnDvηv(−1)nfv and

f ′†v also match. We define

f ′† = ⊗w 6=vf ′w ⊗ f ′†v .

Then by Lemma 3.5 we have

χv(−1)nε(π0,E,v ⊗ χv)IπE (f ′) = εnDvηv(−1)n(Jπ(f) + Jπ⊗η(f)) 6= 0.

It follows that

ε(π0,E,v ⊗ χv) = εnDvηv(−1)nχv(−1)n.

This finishes the proof of Theorem 1.4.

4.2. Proof of Theorem 1.5. We now move to Theorem 1.5. The technical part is, unlike the

situation in Theorem 1.4 where all test functions supported in a small neighbourhood of 1 ∈ G(Fv)

where v is a nonsplit place of F can be transferred to G′(Fv), not all test functions f ′ can be

transferred to G(Fv). In order for the test function on G′(Fv) to have a matching function f ,

there is a nontrivial vanishing condition on the orbital integrals. Lacking a good understanding
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of representation theory and harmonic analysis on S′(Fv), the result we obtain is unfortunately

limited to the elliptic case.

We keep the notation of the theorem. Let us put Π = π0,E . Assume that n is odd. Assume also

that P ′χ and P ′′χη are not identically zero on Π. The later two conditions in particular implies that

Π∨ ⊗ (χχc)−1 = Π and Πc = Π.

Lemma 4.1. Assume that Πv is elliptic. Let D be the quaternion algebra over Fv, split (resp.

nonsplit) if ε(Πv ⊗χv) = ηv(−1)χv(−1) (resp. −ηv(−1)χv(−1)). Then there is an f ′ ∈ S(G′(Fv))0

(for the group G(Fv) given by this quaternion algebra D) such that IΠv(f
′) 6= 0.

Proof. Let f ′ be a test function supported in the elliptic locus such that IΠv(f
′) 6= 0. Let f ′′ =

f ′ + χv(−1)ε(Πv ⊗ χv)f
′† where −† is the involution defined by (3.3) in Subsection 3.4. Then

IΠv(f
′′) = 2IΠv(f

′) 6= 0 by Lemma 3.5.

It remains to explain that f ′′ ∈ S(G′(Fv))0. We need to prove that if x ∈ G′(Fv) is an elliptic

element that does not match any y ∈ G(Fv), then OG
′
(x, f ′′) = 0.

The element x matches some y ∈ G(Fv) if and only if 1 − (αα)−1 ∈ εN GLn(Ev) where ε =

ε(Πv ⊗ χv)ηv(−1) in F×v /NE
×
v . Since x ∈ G′(Fv) is elliptic, 1 − (αα)−1 is an elliptic element in

GLn(Ev) in the usual sense and therefore 1− (αα)−1 ∈ εN GLn(Ev) if and only if det(1−αα−1) ∈
εnNE×v . Since n is odd, this is further equivalent to ηv(1 − (αα)−1) = ε, which simplifies to

ηv(1− αα) = ε(Πv ⊗ χv)χv(−1).

Therefore if x does not match any y ∈ G(Fv), then ηv(1− αα) = −ε(Πv ⊗ χv)χv(−1). We have

OG
′
(x, f ′†) = OS

′
(
t
s′, f̃ ′) = ηv(1− αα)OS

′
(s′, f̃ ′) = −ε(Πv ⊗ χv)χv(−1)OG

′
(x, f ′)

which implies OG
′
(x, f ′′) = 0. Note that the second equality follows from the calculations in the

proof of Lemma 3.6. �

A similar argument also proves the following lemma.

Lemma 4.2. Let D be the quaternion algebra over Fv, split (resp. nonsplit) if ε(Πv ⊗ χv) =

χv(−1)ηv(−1) (resp. −χv(−1)ηv(−1)). Assume that Πv is supercuspidal. Let f ′ ∈ S(G′(Fv)) and

f ′Πv(g) =
∑
W

〈Πv(fv)W,Πv(g)W 〉

where W runs through an orthonormal basis of Πv. If f ′′ ∈ S(G′(Fv)) such that∫
Z′(Fv)

f ′′(zg)ωΠv(z)dz = f ′Πv(g),

then f ′′ ∈ S(G′(Fv))0 (for the group G(Fv) given by this quaternion algebra D).

Proof. We keep the notation from the proof of Lemma 3.5 and 4.1. To simplify notation, if f ′ is a

matrix coefficient of Πv, by the orbital integral O(x, f ′) we mean O(x, f ′1) where f ′1 ∈ S(G′(Fv)) is

a function such that ∫
Z′(Fv)

f ′1(zg)ωΠv(z)dz = f ′(g)
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This is independent from the choice of f ′1.

The Hom-spaces HomH′(F )(Πv ⊗ χH′,v,C) and HomH′′(Fv)(Πv ⊗ χv,C) are both of dimension

one, and for a fixed regular semisimple x ∈ G′(Fv), the linear form

(W,W ′) 7→ OG
′
(x, 〈W,Πv(·)W ′〉)

defines an element in

HomH′(F )(Πv ⊗ χH′,v,C)⊗HomH′′(Fv)(Πv ⊗ χv,C).

It follows that there is a function A(x) on G′(Fv) independent of W and W ′ such that

OG
′
(x, 〈W,Πv(·)W ′〉) = A(x)`′(W )`′′(W ′).

Thus

OG
′
(x, f ′Πv) = A(x)IΠv(f

′).

Let us now consider OG
′
(x, (f ′†)Πv). By the proof of Lemma 3.5, on the one hand, we have

OG
′
(x, (f ′†)Πv) = A(x)IΠv(f

′†) = ε(Πv ⊗ χv)A(x)IΠv(f
′) = ε(Πv ⊗ χv)OG

′
(x, f ′Πv).

On the other hand by the proof Lemma 4.1 we have

OG
′
(x, (f ′†)Πv) = OG

′
(x, (f ′Πv)

†) = ηv(1− αα)OG
′
(x, f ′Πv).

Thus if OG
′
(x, f ′Πv) 6= 0 we have ε(Πv ⊗ χv) = ηv(1 − αα). As in the proof of Lemma 4.1, this

implies that f ′′ ∈ S(G′(Fv))0 (for the group G given by this quaternion algebra D). �

Proof of Theorem 1.5. We just need to reverse the argument in the proof of Theorem 1.4. Let D

be the quaternion algebra over F that splits at all v 6∈ Σ and split places, and at a nonsplit place

v ∈ Σ, it is split (resp. nonsplit) if ε(Πv ⊗ χv) = χv(−1)ηv(−1) (resp. −χv(−1)ηv(−1)). Let

G = GLn(D).

By the assumption of the theorem we know that P ′χ and P ′′χη are not identically zero on Π.

This implies that if v is a split place of F and w a place of E above it, then Πw ' π0,v and

Π∨w ⊗ χ1χ2 ' Πw if we write χv = (χ1, χ2).

The main technical assumption of the theorem is the following. There is a finite set Σ of places

of F containing dyadic places, such that if v 6∈ Σ, then Ev/Fv, π0,v and χv are all unramified.

Moreover if v ∈ Σ, then either v splits in E or π0,Ev is supercuspidal, and there is at least one place

v1 in Σ such that π0,Ev1
is elliptic. As in the proof of Theorem 1.4 we have the sets of places S and

T. We require that the set S contains Σ.

We choose the test function f ′ as follows. Assume first that v 6= v1. If v 6∈ Σ, then we choose

f ′v = 1G′(oFv ) and fv = 1G(oFv ). If v is infinite then we choose f ′v ∈ S(G′(Fv))
+ such that IΠv(f

′
v) 6= 0

and let fv = bcv(f
′
v) ∈ S(G(Fv))

+ be the test function that matches it. This is possible because

Π∨w ⊗ χ1χ2 ' Πw. If v ∈ Σ and is split we choose any f ′v such that IΠ(f ′v) 6= 0 and let fv be the
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function that matches f ′v in the sense of Lemma 2.3. If v ∈ Σ is nonsplit and Πv is supercuspidal,

then we take an f ′′v ∈ S(G′(Fv)) and choose f ′v ∈ S(G′(Fv)) such that∫
Z′(Fv)

f ′v(zg)ωΠv(z)dz = (f ′′v )Πv(g),

as in Lemma 4.2. We may assume that IΠ′v(f
′
v) 6= 0. By Lemma 4.2, f ′v ∈ S(G′(Fv))0 and we

let fv ∈ S(G(Fv)) be a test functions that matches f ′v. If v = v1, then we choose f ′v to be a test

function supported in the elliptic locus such that IΠv(f
′
v) 6= 0 and f ′v ∈ S(G′(Fv))0. By Lemma 4.1

such a test function exists. We let fv ∈ S(G(Fv)) be a test functions that matches f ′v.

For this test function we have IΠ(f ′) 6= 0. Now argue as in the proof of Theorem 1.4, we conclude

that

(4.2) IΠ(f ′) = Jπ(f) + Jπ⊗η(f).

Here π is an irreducible cuspidal representation of G(AF ) such that πE = Π. So Pχ is not identically

on either on π or π ⊗ η. But as a character of G(AF ), η is trivial when restricted to H(AF ). It

follows that Pχ is identically zero on π if and only if it is so on π ⊗ η. Thus it is not identically

zero on both. Finally π0, π and π ⊗ η agree at all the split places. So either π or π ⊗ η is the

Jacquet–Langlands transfer of π0 to G(AF ).

By Theorem 1.4, the quaternion algebra D satisfies ε(π0,E,v ⊗ χv) = εnDvχv(−1)nηv(−1)n at all

place v. As n is odd, this determines D uniquely. This finishes the proof of Theorem 1.5. �

5. Analysis of the orbits

5.1. Semisimple elements in S′. In this section, E/F is a quadratic field extension of either num-

ber fields or local fields of characteristic zero. Recall that we have the groups G′ = ResE/F GL2n,

H ′ = ResE/F (GLn×GLn) embedded in G′ as diagonal blocks, H ′′ = GL2n,F , and Z ′ ' GL1,F the

split center of G′. We also have a symmetric space

S′ = {gg−1 | g ∈ G′}

on which H ′ acts by twisted conjugation. An element in S′(F ) is called semisimple if its H ′-orbit

is (Zariski) closed. It is called regular semisimple if its stabilizer in H ′ is a torus of dimension n.

It is called elliptic if further more its stabilizer in H ′ is an elliptic torus modulo Z ′ (over F ). An

element g ∈ G′(F ) is semisimple (resp. regular semisimple, resp. elliptic) if gg−1 is so in S′(F ).

In what follows we are going to make repeated use of the following lemma without mentioning

it, cf. [AC89, Chapter 1, Lemma 1.1].

Lemma 5.1. Let g ∈ GLn(E). Then Ng is conjugate to an element in GLn(F ). Moreover if

g1, g2 ∈ GLn(E), then g1 and g2 are twisted conjugate if and only if Ng1 and Ng2 are conjugate in

GLn(E).

We first classify all semisimple elements in S′(F ).
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Lemma 5.2. Every semisimple element in S′(F ) is in the H ′(F )-orbit of the form s′(α, n1, n2, n3),

where n1 +n2 +n3 = n is a partition of n, α ∈ GLn1(E), αα ∈ GLn1(F ) is semisimple in the usual

sense, det(αα− 1) 6= 0, and

s′(α, n1, n2, n3) =



α 1n1

0n2 1n2

1n3 0n3

1n1 − αα −α
1n2 0n2

0n3 1n3



Proof. Let s′ =

(
A B

C D

)
be a semisimple element. We claim that AA, DD, BC and CB are all

semisimple elements in Mn(E) in the usual sense. To see this we may assume that F is algebraically

closed as being semisimple is a property that does not depend on the base field. Then E = F ×F ,

S′ consists of elements of the form (g, g−1), g ∈ GL2n(F ), and it is identified with GLn(F ) by

projection to the first factor. The group H ′ is identified with four copies of GLn(F ), and two copies

of GLn(F ) × GLn(F ) respectively acts on GL2n(F ) by left and right translation. The claim then

reduces to [JR96, Lemma 4.2].

We will use twisted conjugation by elements in H ′(F ) to reduce s′ to an element of the form

s′(α, n1, n2, n3). This takes several steps. When we say that “s′ or one of the blocks in s′ takes a

particular form”, or “we may assume a block of s′ is of the form”, we mean that after replacing s′

by its twisted conjugation by elements in H ′(F ) which do not change the particular shape of s′ we

have achieved in the previous steps, that block of s′ takes the shape that we want.

Step 1: Simplifying B. We may assume that B is of the form(
1n−n3

0n3

)
.

Make a partition

A =

(
A1 A2

A3 A4

)
of the matrix A with A1 ∈Mn−n3(E), and similar partitions for C and D. From the condition that

s′s′ = 1, we conclude

A

(
1n−n3

0n3

)
+

(
1n−n3

0n3

)
D = 0, CA+DC = 0,

and

AA+

(
1n−n3

0n3

)
C = 1n, C

(
1n−n3

0n3

)
+DD = 1n.
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It follows that A3 = 0, D2 = 0, A4A4 = D4D4 = 1n3 . Thus we may assume A4 = D4 = 1n3 . Thus

s′ takes the following form

s′ =


A1 A2 1

1 0

C1 C2 −A1

C3 C4 D3 1

 .

Since AA is semisimple in the usual sense, A1A1 is so. We may further assume that A1A1 has

entries in F . Then C1 has entries in F .

Step 2: C1 is invertible. To see this, first as BC is semisimple in the usual sense, we conclude

that C1 ∈ Mn−n3(F ) is semisimple in the usual sense. If C1 is not invertible we may assume that

C1 is of the form

(
0

C ′1

)
where C ′1 is invertible. Using the fact that BC and CB are semisimple

in the usual sense, we conclude that C has to be of the form

0

C ′1 ∗
∗ ∗

 .

Therefore

A1A1 =

(
1

1− C ′1

)
.

Since 1 is not an eigenvalue of 1−C ′1, we may assume that A1 takes the form

(
1

A12

)
. It follows

that A takes the form

A =

1 A21

A12 A22

1

 , A2 =

(
A21

A22

)
.

That the upper right corner of C equals zero implies that the upper right corner of A is purely

imaginary. Now twisted conjugate s′ by an element in H ′(F ) of the form


1 ∗

1

1

 ,

1

1

∗ 1




we may assume that the upper right corner is zero.
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Then it follows that s′ is of the form

1 1

∗ ∗ 1

1 0

0 1

C ′1 ∗ ∗
∗ ∗ ∗ 1


.

For any λ ∈ F×, the element

1 λ

∗ ∗ 1

1 0

0 1

C ′1 ∗ ∗
∗ ∗ ∗ 1


=



λ

∗
∗

1

∗
∗





1 1

∗ ∗ 1

1 0

0 1

C ′1 ∗ ∗
∗ ∗ ∗ 1





λ

∗
∗

1

∗
∗



−1

is in the same H ′(F )-orbit of s′. Since s′ is semisimple, it follows that the limit as λ→ 0

1 0

∗ ∗ 1

1 0

0 1

C ′1 ∗ ∗
∗ ∗ ∗ 1


,

is also in the orbit. It is a contradiction, since the rank of B is a constant in an H ′(F )-orbit. This

proves the claim that C1 is invertible.

Step 3: final simplification. Once we have that C1 is invertible, we may assume that C2 and C3

are both zero. Then by CA+DC = 0, we conclude that A2 and D3 are zero. Using semisimplicity

of s′ again we conclude that C4 should be zero. So we arrive at the conclusion that s′ takes the

form 
A1 1

1 0

1−A1A1 −A1

1

 .

Finally we may replace A1 by its twisted conjugation so that A1 =

(
α

0

)
where α is invertible

and αα ∈ GLn1(F ). The lemma then follows. �

Lemma 5.3. Let s′ = s′(α, n1, n2, n3) be a semisimple element in S′(F ) as in Lemma 5.2. It is

regular if and only if n1 = n and αα ∈ GLn(F ) is regular semisimple in the usual sense. It is
29



elliptic if αα ∈ GLn(F ) is elliptic in the usual sense. Two regular semisimple s′(α1, n, 0, 0) and

s′(α2, n, 0, 0) are in the same H ′(F )-orbit if and only if α1 and α2 are twisted conjugate in GLn(E).

Proof. The stabilizer of s′ in H ′ is isomorphic to

(GLn1,E)α,twisted ×GLn2,E ×(GLn3,F ×GLn3,F ).

The twisted stabilizer (GLn1,E)α,twisted is an inner form of (GLn1,F )αα, whose dimension is at least

n1. Thus the dimension of H ′s′ is at least

n1 + 2n2
2 + 2n3

3 ≥ n,

and the equality holds if and only if n2 = n3 = 0 and dim(GLn1,E)α,twisted = n, which is equivalent

to that αα is regular semisimple in GLn(F ). The other assertions of the lemma are obvious. �

To simplify notation, for any α ∈Mn(E), we put s′(α) = s′(α, n, 0, 0).

Let An be the affine space of dimension n over F and

q′ : S′ → An

be the morphism (
A B

C D

)
7→ Tr∧i(2AA− 1), i = 1, · · · , n.

Lemma 5.4. The map q′ is a categorical quotient.

Proof. This is a geometric statement, so we may assume that F is algebraically closed. Then as in

the proof of Lemma 5.2 we are then reduced to the case considered in [Guo96,Zha15a]. �

5.2. Explicit étale Luna slices. Let us begin with some general discussion. Let G be a reductive

algebraic group acting on an affine algebraic variety X. We denote by X → X//G, or simply X//G

the categorical quotient. Let x ∈ X and Tx be the tangent space of X at x. We fix a Gx-invariant

inner product on Tx. Let TOx be the tangent space of orbit Gx at x, and Nx = TO⊥x the orthogonal

complement in Tx. The group Gx then acts on Nx, and this is called the sliced representation at

x. An étale Luna slice at x is a locally closed subvariety Z ⊂ X, containing x and stable under

the Gx action, together with a strongly étale Gx-equivariant morphism ι : Z → Nx such that the

morphism

G×Gx Z → X

is strongly étale. Here if X and Y are affine varieties with G actions, a morphism X → Y is called

strongly étale if the induced morphism X//G→ Y//G is étale and the diagram

X

��

// Y

��
X//G // Y//G
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is Cartesian.

We now come back to the action of the group H ′ on S′. Let

s′ =

{(
X

Y

)∣∣∣ X,Y ∈Mn(E)−

}
,

where Mn(E)− = {X ∈ Mn(E) | X = −X}. This is viewed as an algebraic variety over F . It is

isomorphic to the tangent space of S′ at 1. The stabilizer of 1 in H ′ is isomorphic to GLn,F ×GLn,F ,

which acts on s′ by conjugation. Let g ∈ G′(F ) and s′ = gg−1 ∈ S′(F ). The tangent space of S′ at

s′ is identified with

Ts′ = {gY g−1 | Y ∈ s′}.

The tangent space of the H ′-orbit of s′ is identified with a subspace

TOs′ = {Xs′ − s′X | X ∈ h′}.

We fix an inner product on Ts by

〈gY1g
−1, gY2g

−1〉 = TrY1Y2.

This inner product is H ′s′-invariant. Put

Ns′ = {Y s′ | θ′(Y ) = −Y, Y s′ = −s′Y }.

Then we have an orthogonal decomposition

Ts′ = TOs′ ⊕⊥ Ns′ .

Thus Ns′ is the sliced representation.

Put

Z ′ =
{
xs′ | xθ(x) = 1, xs′ = s′x−1, det(1 + x) 6= 0, det

(
(1−Ad(xs′))|g′⊥

s′

)
6= 0
}
,

where g′s′ stands for the Lie algebra of the centralizer of s′ in G′, and the orthogonal complement

is taken with respect to an H ′s′-invariant inner product. Then Z ′ is a locally closed subscheme of

S′. Put also

ι′ : Z ′ → Ns′ , xs′ 7→ (1− x)(1 + x)−1s′.

Lemma 5.5. The maps ι′ : Z ′ → Ns′ and (H ′ ×Z ′)//H ′s′ → S′ are strongly étale. Therefore Z ′ is

an étale Luna slice at s′.

Proof. Since this is a geometric statement we may assume that the base field F is algebraically

closed. As in the proof of Lemma 5.4, this lemma is then reduced to the explicit construction

of étale Luna slices in the case of relative trace formula of Guo–Jacquet, and this is explained

in [Zha15a, Subsection 5.3] (which in turn is based on [JR96, Section 5.2]). �
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We will need more concrete descriptions of the sliced representations. Let s′ = s′(α, n1, n2, n3)

be a semisimple element in S′(F ). Its stabilizer in H ′ equals

H ′1 ×H ′2 ×H ′3 = (GLn1,E)α,twisted ×GLn2,E ×(GLn3,F ×GLn3,F ).

The sliced representation at s′(α, n1, n2, n3) is isomorphic to V ′1 ⊕ V ′2 ⊕ V ′3 where

V ′1 = {A ∈Mn1(E) | αA = Aα}, V ′2 = Mn2(E), V ′3 = Mn3(E)− ⊕Mn3(E)−.

In the three extreme cases where n1 = n, n2 = n and n3 = n, we have the following descriptions.

(1) Assume n1 = n, n2 = n3 = 0. The embedding of (GLn,E)α,twisted in H ′ is given by

h 7→

(
h

h

)
.

The embedding of V ′1 in Ns′ is given by

A 7→

(
A

−A(1− αα)

)
s′.

(2) Assume n2 = n, n1 = n3 = 0. Then s′ =

(
1

1

)
. The embedding of GLn,E in H ′ is given

by

h 7→

(
h

h

)
.

The embedding of V ′2 = Mn(E) into Ns′ is given by

A 7→

(
A

−A

)
s′ =

(
A

−A

)

(3) Assume n1 = n2 = 0. Then s′ = 1. The embedding of GLn,F ×GLn,F in H ′ is given by

(h1, h2) 7→

(
h1

h2

)
.

The embedding of V ′3 = Mn3(E)− ⊕Mn3(E)− into Ns′ is given by

(A,B) 7→

(
A

B

)
s′ =

(
A

B

)
.

In general, in obvious notation, we have Z ′ = Z ′1 × Z ′2 × Z ′3 according to the decomposition

Ns′ = V ′1 × V ′2 × V ′3 . We also have the H ′s′-equivariant morphism ι′ = ι′1 × ι′2 × ι′3.
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5.3. Semisimple elements in G. Recall that D is a quaternion algebra over F with a fixed

embedding E → D, G = GLn(D), H = ResE/F GLn the centralizer of E× in G, Z ' GL1,F the

split center of G. Recall that θ is the automorphism of G given by conjugation by

(
1n

−1n

)
.

Then H is the stabilizer of θ.

Put S = {gθ(g)−1 | g ∈ G} and H acts on S by conjugation. Similarly to S′, an element in S(F )

is called semisimple if its H-orbit is (Zariski) closed. It is called regular semisimple its stabilizer in

H is a torus of dimension n. It is called elliptic if further more its stabilizer in H is an elliptic torus

modulo Z (over F ). An element g ∈ G(F ) is semisimple (resp. regular semisimple, resp. elliptic)

if gθ(g)−1 is so in S(F ).

The following lemma summarizes [Guo96, Proposition 1.2].

Lemma 5.6. Every semisimple g ∈ G(F ) is in the (H ×H)(F )-orbit of

g(β, n1, n2, n3) =



1n1 εβ

0n2 ε1n2

1n3 0n3

β 1n1

1n2 0n2

0n3 1n3


,

where β ∈ GLn1(E), ββ ∈ GLn(F ) and det(1 − εββ) 6= 0. It is regular semisimple (resp. elliptic)

if n2 = n3 = 0 and ββ is regular semisimple (resp. elliptic) in GLn(F ) in the usual sense.

If n2 = n3 = 0, we write s(β, n, 0, 0) = s(β) and g(β) = g(β, n, 0, 0).

Let g ∈ G and s = gθ(g)−1 =

(
A B

C D

)
∈ S. Define

q : G→ An, g 7→ Tr∧iA, i = 1, · · ·n.

Lemma 5.7. The map q is a categorical quotient.

Proof. This is again a geometric statement, so we may assume that F is algebraically closed. Then

the lemma reduces to the case considered in [Guo96,Zha15a]. �

At each semisimple g ∈ G(F ), we construct an explicit étale Luna slice as follows. Put s =

gθ(g)−1 ∈ S(F ). We note (H ×H)g ' Hs. The normal space of the H ×H-orbit of g at the point

g is identified with

Ng = {Y g | Y ∈ s, Y s = sY }.

The group (H ×H)g acts on Ng and Ng is the sliced representation. Let

Z = {yg ∈ G | yθ(y) = 1, ys = sy, det(1 + y) 6= 0, det
(

(1−Ad(ys))|g⊥s
)
6= 0},
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where gs stands for the Lie algebra of the centralizer of s in G, and the orthogonal complement is

taken with respect to an Hs-invariant inner product. There is a map ι : Z → Ns given by

yg 7→ (1− y)(1 + y)−1g.

Lemma 5.8. The maps Z → Ns and ((H×H)×Z)//(H×H)g → G are strongly étale. Therefore

Z is an étale Luna slice at g.

Proof. We first recall that (H × H)g = Hs. Checking that ((H × H) × Z)//(H × H)g → G

is strongly étale is equivalent to checking that (H × Z)//Hs → S is strongly étale. This is a

geometric statement so we may assume that F is algebraically closed. Then the action of H on

S is reduced to two copies of GLn,F ×GLn,F acting on GL2n,F . The lemma again reduces to the

description in [Zha15a, Section 5.3]. �

We now give more concrete descriptions of the sliced representation at g = g(β, n1, n2, n3). Let

s be the space consisting of matrices of the form(
εY

Y

)
, Y ∈Mn(E).

It is identified with the tangent space of S at 1, and the group H acts on s by conjugation. We also

write sn to indicate the size of the space s. The stabilizer (H ×H)g is isomorphic to H1×H2×H3

where

H1 = (GLn1,E)β,twisted, H2 = GLn2,E , H3 = GLn3,E .

The norm space Ng = V1 ⊕ V2 ⊕ V3 with

V1 =

{(
εY

Y

)
∈ sn1

∣∣∣ βY = Y β

}
, V2 = sn2 , V3 = sn3 .

We also have Z = Z1 × Z2 × Z3 according to the decomposition Ng = V1 × V2 × V3, and the

Hs-equivariant morphism ι = ι1 × ι2 × ι3.

6. Transfer of test functions

6.1. Matching. The goal of this section is to prove Theorem 2.1. Throughout this section, we

suppress the subscript v and assume that E/F is a quadratic extension of local fields of characteristic

zero.

Recall that we have the categorical quotients

q′ : S′ → An, q : G→ An.

Two semisimple elements s′ ∈ S′(F ) and g ∈ G(F ) match if they are mapped to the same point in

An. More concretely we have

Lemma 6.1. Two regular semisimple elements s′(α) ∈ S′(F ) and g(β) ∈ G(F ) match if and only

if −(1− αα)(αα)−1 and εββ have the same characteristic polynomial.
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Proof. Let s′(α) ∈ G′(F ) and g(β) ∈ G(F ) be regular semisimple elements. The upper left n × n
block of its image in S(F ) is

(1− εββ)−1(1 + εββ).

By definition, that s′(α) and g(β) match is equivalent to 2αα − 1 and (1 − εββ)−1(1 + εββ) have

the same characteristic polynomial. This is further equivalent to that −(1 − αα)(αα)−1 and εββ

have the same characteristic polynomial. �

We put

G(F )reg,0 =

{
g ∈ G(F )reg

∣∣∣ gθ(g)−1 =

(
A εB

B A

)
∈ S(F ),

1

2
(A+ 1) ∈ N GLn(E)

}
,

and

S′(F )reg,0 =

{
s′ =

(
A B

C D

)
∈ S′(F )reg

∣∣∣ 1− (AA)−1 ∈ εN GLn(E)

}
.

Lemma 6.2. The matching defines a bijection between the H-orbits in Greg,0 to S′reg,0.

Proof. Take s′(α) ∈ S′(F )reg,0. By definition we can find a β ∈ GLn(E) such that

1− (αα)−1 = εββ.

Since αα ∈ GLn(F ) is regular semisimple in the usual sense, so is ββ. Then g(β) is regular

semisimple in G(F ) and matches s′(α) by definition. The other direction is proved similarly. �

Recall from (2.5) that we have defined transfer factors on G and G′. Fixed a character η̃ : E× →

C× whose restriction to F× equals η. Fix a purely imaginary element τ ∈ E×. If s′ =

(
A′ B′

C ′ D′

)
∈

S′(F ) be a regular semisimple element, then by Lemma 5.2, A′, B′, C ′, D′ are all invertible and we

define (cf. (2.5))

κS
′
(s′) = χ(τD′)η̃(B′).(6.1)

If g ∈ G(F ) and g−1 =

(
A εB

B A

)
∈ G(F ) then by Lemma 5.6, A,B are both invertible and in

(2.5) we put κG(s) = χ(A).

We also put

S(G(F ))0 = {f ∈ S(G(F )) | OG(g, f) = 0 for all g 6∈ G(F )reg,0},

and

S(S′(F ))0 = {f ′ ∈ S(S′(F )) | OG′(s′, f ′) = 0 for all s′ 6∈ S′(F )reg,0}.

Then we say that f ∈ S(G(F ))0 and f ′ ∈ S(G′(F ))0 match if

κG(g)OG(g, f) = κG
′
(s′)OG

′
(s′, f ′s′),

for all matching regular semisimple g ∈ G(F ) and s′ ∈ S′(F ).
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Theorem 6.3. For all f ∈ S(G(F ))0 there is an f ′ ∈ S(S′(F ))0 that matches it, and vice versa.

By (2.3) and (2.4), this theorem and Theorem 2.1 are equivalent. The rest of this section is

devoted to the proof of Theorem 6.3. The basic idea is that matching of test functions is a local

property, and it is enough to prove the existence of “local transfer” near each semisimple point. The

orbital integrals near a semisimple point can be related to the orbital integrals on the corresponding

sliced representation via semisimple descent. In the current setting the orbital integrals on the sliced

representations turn out to be familiar ones. For readers’ convenience we record this in the following

lemma, whose proof can be found in [Zha14, Proposition 3.8].

Lemma 6.4. Let f ∈ S(G(F ))0. If for all matching semisimple g ∈ G(F ) and s′ ∈ S′(F ), there

is an (H ×H)(F )-invariant neighbourhood U of g in G(F ) and an H ′(F )-invariant neighbourhood

U ′ of s′ in S′(F ), and a function f ′s′ ∈ S(S′(F ))0, such that for all matching regular semisimple

g ∈ U and s′ ∈ U ′ we have

κG(g)OG(g, f) = κS
′
(s′)OS

′
(s′, f ′s′),

then there is an f ′ ∈ S(S′(F ))0 that matches f . Similar statement holds in the other direction.

The condition in this lemma will be referred to as the existence of local transfer at g and s′. The

existence of local transfer is what we will prove later in this section.

6.2. Transfer on the sliced representations. Near each semisimple point, the orbital inte-

gral can be connected to the orbital integral on the sliced representation of that point. As the

preparation for the proof of Theorem 6.3, we explain the transfer of test functions on the sliced

representations in this subsection.

The transfer of test functions on the sliced representations are closely related to the transfer of test

functions in the relative trace formulae of Guo and Jacquet, which has been established in [Zha15a].

We recall it first. Put V = Mn(F )×Mn(F ) and W = Mn(E). The group H′ = GLn,F ×GLn,F acts

on V by

(h1, h2) · (X1, X2) = (h1X1h
−1
2 , h2X2h

−1
1 ),

and the group H = ResE/F GLn,E acts on W by twisted conjugation. The element (X1, X2) ∈ V is

regular semisimple if X1X2 ∈ GLn(F ) and is regular semisimple in the usual sense. The element

Y ∈ W is regular semisimple if Y Y ∈ GLn(E) and is regular semisimple in the usual sense. Two

regular semisimple elements (X1, X2) ∈ V and Y ∈ W match if X1X2 and εY Y have the same

characteristic polynomial. For f ′ ∈ S(V) and f ∈ S(W), define the orbital integrals

OV((X1, X2), f ′) =

∫
H(X1,X2)

(F )\H(F )
f ′(h1X1h

−1
2 , h2X2h

−1
1 )η(h1h2)dh1dh2,

and

OW(Y, f) =

∫
HY (F )\H(F )

f(hY h
−1

)dh.
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Put

S(V)0 = {OV((X1, X2), f ′) = 0 for all regular semisimple (X1, X2) ∈ V with X1X2 6∈ εN GLn(E)}.

Put also for (X1, X2) ∈ V,

κV(X1, X2) = η(X1).

Two functions f ′ ∈ S(V)0 and f ∈ S(W) match if

κV(X1, X2)OV((X1, X2), f ′) = OW(Y, f)

for all matching (X1, X2) and Y . The following is [Zha15a, Theorem 5.14].

Proposition 6.5. For any f ′ ∈ S(V)0 there is an f ∈ S(W) that matches it, and vice versa.

Let us get back to the sliced representations. Let

s′ = s′(α, n1, n2, n3) ∈ S′(F ), g = g(β, n1, n2, n3) ∈ G(F )

be matching semisimple elements. Recall that the sliced representation at s′ is isomorphic to

(H ′1, V
′

1)× (H ′2, V
′

2)× (H ′3, V
′

3),

where

H ′1 = (GLn1,E)α,twisted, H ′2 = GLn2,E , H ′3 = GLn3,F ×GLn3,F ,

and

V ′1 = {X ∈Mn1(E) | αX = Xα}, V ′2 = Mn2(E), V ′3 = Mn3(E)− ⊕Mn3(E)−,

The sliced representation at g ∈ G(F ) is isomorphic to

(H1, V1)× (H2, V2)× (H3, V3),

where

H1 = (GLn,E)β,twisted, H2 = GLn2,E , H3 = GLn3,E ,

and

V1 =
{
Y ∈Mn1(E) | βY = Y β

}
, V2 = Mn2(E), V3 = Mn3(E).

We can speak of the transfer of functions on each component.

(1) The transfer on V ′1 and V1. The group H ′1 and H1 act on V ′1 and V1 respectively by twisted

conjugation. Let L be the centralizer of αα in GLn1(F ). Since −(1− αα)(αα)−1 and εββ

have the same characteristic polynomial, it is also the centralize of ββ. Then H ′1 and H1

are both inner forms of L. The map

V ′1 → h′1, X → Xα

is an isomorphism of representations of H ′1 where H ′1 acts on h′1 by conjugation. The map

V1 → h1, Y 7→ Y β
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is an isomorphism of representations of H1 where H1 acts on h1 by conjugation. Thus

we may speak of semisimple and regular semisimple elements in V ′1 and V1, and matching

between these elements. Two semisimple elements X ∈ V ′1 and Y ∈ V1 match if Xα and

Y β have the same (reduced) characteristic polynomial. We define

V ′1,reg,0 = {X ∈ V ′1,reg | X matches some Y ∈ V1,reg},

and

V1,reg,0 = {Y ∈ V1,reg | Y matches some X ∈ V ′1,reg}.

For regular semisimple X ∈ V ′1 , Y ∈ V1, and test functions f ′ ∈ S(V ′1), f ∈ S(V1), we may

define orbital integral OV
′
1 (X, f ′) and OV1(Y, f) as usual. Define

S(V ′1)0 = {f ′ ∈ S(V ′1) | OV ′1 (X, f ′) = 0 for all X 6∈ V ′1,reg,0}

and S(V1)0 similarly. Two test functions f ′ ∈ S(V ′1)0 and f ∈ S(V1)0 match if

OV
′
1 (X, f ′) = OV1(Y, f)

for all matching regular semisimple X and Y . The transfer of test functions between inner

forms of GLn implies that for any f ′ ∈ S(V ′1)0 there is an f ∈ S(V1)0 that matches it and

vice versa.

(2) The transfer on V ′2 and V2. Both V ′2 and V2 are isomorphic to Mn2(E). Regular semisimple

elements X ∈ V ′2 and Y ∈ V2 mean XX and Y Y are in GLn2(E) and are regular semisimple

in the usual sense. We define that they match if XX and −εY Y have the same characteristic

polynomial. We define

V ′2,reg,0 = {X ∈ V ′2,reg | X matches some Y ∈ V2,reg},

and

V2,reg,0 = {Y ∈ V2,reg | Y matches some X ∈ V ′2,reg}.

For regular semisimple X ∈ V ′2 , Y ∈ V2, and test functions f ′ ∈ S(V ′2), f ∈ S(V2), we define

orbital integral OV
′
2 (X, f ′) and OV2(Y, f) by

OV
′
2 (X, f ′) =

∫
H′2,X\H2

f ′(h−1Xh)χ(h−1h)dh,

and

OV2(Y, f) =

∫
H2,Y \H2

f(h−1Y h)χ(h−1h)dh.

Define

S(V ′2)0 = {f ′ ∈ S(V ′2) | OV ′2 (X, f ′) = 0 for all X 6∈ V ′2,reg,0}

and S(V2)0 similarly. Define for regular semisimple X and Y the transfer factor

κV
′
2 (X) = χ(X), κV2(Y ) = χ(Y ).
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Two test functions f ′ ∈ S(V ′2)0 and f ∈ S(V2)0 match if

κV
′
2 (X)OV

′
2 (X, f ′) = κV2(Y )OV2(Y, f)

for all matching regular semisimple X and Y .

Let us explain that for any f ′ ∈ S(V ′2)0 there is an f ∈ S(V2)0 that matches it and vice

versa. First by replacing f ′ and f by f ′χ and fχ, we may assume that χ is trivial. Let

f ′ ∈ S(V ′2)0. Then OV
′
2 (X, f ′) is the orbital integral appearing on the W-side of the transfer

problem of Guo and Jacquet. Then by Proposition 6.5, applied to W = V ′2 , there is an

f̃ ∈ S(V) such that

OV2(X, f ′) = κV(Z1, Z2)OV((Z1, Z2), f̃),

for all regular semisimple X ∈ V ′2 and (Z1, Z2) with Z1Z2 = XX. Since f ′ ∈ S(V ′2)0,

the function f̃ satisfies the property that OV((Z1, Z2), f̃) = 0 if Z1Z2 6∈ N GLn(E) or

Z1Z2 6∈ −εN GLn(E). Now apply Proposition 6.5 again to W = V2, we conclude that there

is a function f ∈ S(V2) such that

κV(Z1, Z2)OV((Z1, Z2), f̃) = OV2(Y, f)

for all regular semisimple X ∈ V ′2 and (Z1, Z2) with Z1Z2 = −εY Y . The function f

satisfies the property that OV2(Y, f) = 0 if −εY Y 6∈ N GLn(E), and hence f ∈ S(V2)0. It

follows that if X ∈ V ′2 matches Y ∈ V2, i.e. XX and −εY Y have the same characteristic

polynomial, then

OV2(X, f ′) = OV2(Y, f).

The proof of the converse direction from f to f ′ is the same.

(3) The transfer on V ′3 and V3 is exactly the transfer problem of Guo and Jacquet. Let

V ′3,reg,0 = {(X1, X2) | X1X2 ∈ εN GLn3(E)}.

For any f ′ ∈ S(V ′3) have the orbital integral

OV
′
3 ((X1, X2), f ′) =

∫
H′

3,(X1,X2)
\H′3

f ′(h−1
1 X1h2, h

−1
2 X2h1)η(h1h2)dh1dh2.

For f ∈ S(V3) we have the orbital integral

OV3(Y, f) =

∫
H3,Y \H3

f(h−1Y h)dh.

We also have

S(V ′3)0 = {f ′ ∈ S(V ′3) | O((X1, X2), f ′) = 0 for all (X1, X2) 6∈ V ′3,reg,0}.

The transfer factor on V ′3 is given by

κV
′
3 ((X1, X2)) = η̃(X1).
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By Proposition 6.5, for any f ′ ∈ S(V ′3)0 there is an f ∈ S(V3) such that

κV
′
3 ((X1, X2))OV

′
3 ((X1, X2), f ′) = OV3(Y, f)

for all matching (X1, X2) and Y , and vice versa.

We put

S(Ns′)0 = S(V ′1)0 ⊗ S(V ′2)0 ⊗ S(V ′3)0, S(Ng)0 = S(V1)0 ⊗ S(V2)0 ⊗ S(V3).

Let us define transfer factors on Ns′ and on Ng by setting

κNs′ (X1, X2, (X3, X4)) = χ(X2)η̃(X3), κNg(Y1, Y2, Y3) = χ(Y2),

and define orbital integrals and matching of test functions in Ns′ and Ng in the obvious way.

The above discussion can then be summarized as the following proposition.

Proposition 6.6. For all f ′ ∈ S(Ns′)0 there is an f ∈ S(Ng)0 such that for all matching X ∈
Ns′,reg,0 and Y ∈ Ng,reg,0, we have

κNs′ (X)ONs′ (X, f ′) = κNg(Y )ONg(Y, f).

6.3. Semisimple descent. We recall the semisimple descent of orbital integrals, which is our main

tool in proving Theorem 6.3. This is a very general procedure, so we temporarily consider in this

subsection a reductive group G acting on an affine variety X and x ∈ X(F ) is a semisimple point

(i.e. the G-orbit of x is Zariski closed, or equivalently G(F )x is closed in X(F ) in the analytic

topology). We will need the notion of an analytic Luna slice, cf. [AG09]. The analytic Luna slice

at x is denoted by (U, p, ψ,M,Nx), where

• U is an G(F )-invariant analytic neighbourhood of x in X(F ).

• p is an G(F )-equivariant analytic retraction p : U → G(F )x and M = p−1(x).

• ψ is an G(F )x-equivariant analytic embedding M → Nx with saturated image and ψ(x) = 0.

Here saturated means that M = ψ−1(ψ(M)). Note that since p is G(F )-equivariant, if y ∈M and

gy = y where g ∈ G(F ), then gx = x, i.e. G(F )y is a subgroup of G(F )x.

For semisimple x ∈ X(F ), we have an étale Luna slice Z and strongly etale morphisms ι :

Z → Nx and φ : G ×Gx Z → X. We can construct an analytic slice (U, p, ψ,M,Nx) from it,

cf. [AG09, Corollary A.2.4]. Let πZ : Z → Z//Gx be the categorical quotient. By definition, the

morphisms Z//Gx → X//G and Z//Gx → Nx//Gx are both étale. Therefore we may choose

a sufficiently small analytic neighbourhood Z ′ of πZ(x) in (Z//Gx)(F ), so that the above two

morphisms are (analytic) isomorphisms from Z ′ to its image. Let M be the inverse image of

Z ′ under the natural map Z(F ) → (Z//Gx)(F ). Let ψ = ι|M . Let U ′ be the inverse image

of Z ′ in (G ×Gx Z)(F ). Let p′ : U ′ → (G//Gx)(F ) be the natural G(F )-invariant map. Let

U ′′ = U ′∩p′−1(G(F )//G(F )x) and U = φ(U ′′) ⊂ X(F ). Note that φ|U ′′ is an analytic isomorphism

from U ′′ to U . Let p = p′ ◦ (φ|U ′′)−1. Then (U, p, ψ,M,Nx) is the desired analytic Luna slice at x.
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The following is [Zha14, Proposition 3.11]. It describes the relation between the orbital integrals

on X near the semisimple point x and the orbital integrals on the sliced representation at x.

Proposition 6.7. Let χ be a character of G(F ). There is an Hx-invariant neighbourhood V ⊂M
of x such that the following holds.

(1) For any f ∈ S(X(F )) there is an fx ∈ S(Nx) such that if y ∈ V, z = ψ(y) and χ is trivial

on H(F )y, we have

(6.2)

∫
G(F )/Gy(F )

f(gy)χ(g)dg =

∫
Gx(F )/Gy(F )

fx(gz)χ(g)dg.

(2) Conversely for any fx ∈ S(Nx) there is an f ∈ S(X(F )) such that the equality (6.2) holds

if y ∈ V, z = ψ(y) and χ is trivial on H(F )y.

6.4. Proof of Theorem 6.3. Let us retain the setup of Theorem 6.3. Let s′ = s′(α, n1, n2, n3) ∈
S′(F ) and g = g(β, n1, n2, n3) ∈ G(F ) be semisimple elements.

Lemma 6.8. If g does not match any semisimple element in S′(F ), then there is an (H ×H)(F )-

invariant neighbourhood U of g such that U ∩ S(F )reg,0 = ∅. If s′ does not match any semisimple

element in G(F ), then there is an H ′(F )-invariant neighbourhood U ′ of s′ such that U ′∩S′(F )reg,0 =

∅.

Proof. That g does not match any semisimple element in S′(F ) is equivalent to

1− εββ 6∈ N GLn1(E).

Any regular semisimple element in a neighbourhood of g is in the (H ×H)(F ) orbit of an element

y = (y1, y2, y3) ∈ U . We can choose the neighbourhood to be small enough such that if y1θ(y1)−1 =(
A εB

B A

)
then 1

2(A + 1) is in a small neighbourhood of (1 − εββ)−1 in GLn1(E). When this

neighbourhood is small enough, no regular semisimple elements (in the usual sense) in it is a norm

(see below for an explanation). This shows that y = (y1, y2, y3) does not match any element in

S′(F ).

The case of s′ can be proved by the same argument.

It remains to explain that if γ ∈ GLn1(F ) is semisimple in the usual sense and γ 6∈ N GLn1(E),

then there is a neighbourhood of γ such that any regular semisimple δ in the neighbourhood is

not a norm. This can be seen as follows. Suppose that there is a sequence of regular semisimple

elements δk, such that δk converges to γ and δk = Ngk for some gk ∈ GLn1(E). As δk’s are all

conjugate to an element in GLn1(F ), we may assume that δk ∈ GLn1(F ). The conjugation action

map GLn1(F ) × GLn1(F )γ → GLn1(F ), (x, y) 7→ xyx−1, is a fibration in a neighbourhood of γ.

Therefore we may further assume that δk ∈ GLn1(F )γ . Moreover as there are only finitely many

maximal tori in GLn1(F )γ up to conjugation, we may assume, by taking a subsequence, that there

is a maximal torus T of GLn1(F )γ , such that δk ∈ T (F ). As δk are all regular semisimple, we
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conclude that gk ∈ T (E). Since the norm map T (E)→ T (F ) is locally a fibration, we may assume,

again by taking a subsequence, that gk is convergent to an element g. Then γ = Ng. �

From now on let us assume that g and s′ match. This in particular implies that −(1−αα)(αα)−1

and εββ have the same characteristic polynomial. We may and will assume that they in fact equal.

Put

s′1 =

(
α 1n1

1n1 − αα −α

)
, s′2 =

(
1n2

1n2

)
, s′3 = 12n3 ,

and

g1 =

(
1n1 εβ

β 1n1

)
, g2 =

(
1n2

1n2

)
, g3 = 12n3 .

The stabilizer of s (resp. s′) has the form H1 × H2 × H3 (resp. H ′1 × H ′2 × H ′3), and the

sliced representation Ns (resp. Ns′) has the form V1 × V2 × V3 (resp. V ′1 × V ′2 × V ′3). We have

Vi//Hi ' V ′i //H
′
i. By the explicit construction in Subsection 5.2, the étale Luna slice at g (resp.

s′) takes the form Z = Z1 × Z2 × Z3 (resp. Z ′ = Z ′1 × Z ′2 × Z ′3). The analytic slice at g (resp.

s′) is denoted by (U, p, ψ,M,Ng) (resp. (U ′, p′, ψ′,M ′, Ns′)). According to the construction of

the analytic slice recalled in Subsection 6.3, M (resp. M ′) takes the form M1 ×M2 ×M3 (resp.

M ′1 ×M ′2 ×M ′3) where Mi ⊂ Zi (resp. M ′i ⊂ Z ′i), where ψ′(Mi) (resp. ψ′(M ′i)) is a saturated open

subset of Vi (resp. V ′i ). We may assume that the image of Mi (resp. M ′i) in Vi//Hi = V ′i //H
′
i are

identified.

Let us assume that xs′ = (x1s
′
1, x2s

′
2, x3s

′
3) ∈ M ′ be a regular semisimple element, xis

′
i ∈ Mi,

and

ψ′(xs′) =

((
X1

−X1(1− αα)

)
,

(
X2

−X2

)
,

(
X3

X4

))
,

where X1 ∈ V ′1 , X2 ∈ V ′2 and (X3, X4) ∈ V ′3 . Write X = (X1, X2, (X3, X4)) ∈ Ns′ . Let yg =

(y1g1, y2g2, y3g3) ∈M be a regular semisimple elements, yigi ∈Mi, and

ψ(yg) =

((
εY1

Y1

)
,

(
εY2

Y2

)
,

(
Y3

Y3

))
,

where Yi ∈ Vi. Write Y = (Y1, Y2, Y3) ∈ Ng.

The next lemma connects the notion of matching of xs′ and yg with the matching of X and Y

in the sliced representation. We use a ∼ b to indicate that a and b have the same characteristic

polynomial. We also note that X1α and αα commute, and hence it makes sense to evaluate a power

series with coefficients being rational functions of αα at X1α. Similarly it makes sense to evaluate

a power series with coefficients being rational functions of εββ at Y1β.

Lemma 6.9. We can find an H ′i-invariant neighbourhood V ′i of s′i in M ′i and a neighbourhood Vi
of gi in Mi, i = 1, 2, 3, and a power series ξ1 with coefficients being rational functions of αα, and

the leading term

ξ1(t) = t(1− αα)(αα)−1 + · · · ,
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such that if xs′ and yg match, and xis
′
i ∈ V ′i, yigi ∈ Vi, i = 1, 2, 3, then

ξ1(X1α) ∼ Y1β, X2X2 ∼ −εY2Y2, X3X3 ∼ εY3Y3.

Proof. We always assume that x and y lie in a small neighbourhoods of 1, or equivalently Xi’s and

Yi’s are sufficiently close to 0. Elementary but tedious calculations give

x1s
′
1 =

(
A B

−B(1− αα) A

)(
α 1

1− αα −α

)
where

A = (1 +X1X1(1− αα))−1(1−X1X1(1− αα)), B = −2(1 +X1X1(1− αα))−1X1

and

x2s
′
2 =

(
−2(1 +X2X2)−1X2 (1 +X2X2)−1(1−X2X2)

(1 +X2X2)−1(1−X2X2) 2(1 +X2X2)−1X2

)
,

and

x3s
′
3 =

(
(1−X3X4)−1(1 +X3X4) −2(1−X3X4)−1X3

−2(1−X3X4)−1X4 (1−X3X4)−1(1 +X3X4)

)
.

Similarly we have

y1g1 =

(
(1− εY1Y1)−1(1 + εY1Y1) −2ε(1− εY1Y1)−1Y1

−2Y1(1− εY1Y1)−1 (1− εY1Y1)−1(1 + εY1Y1)

)(
1 εβ

β 1

)
and

y2g2 =

(
−2ε(1− εY2Y2)−1Y2 ε(1− εY2Y2)−1(1 + εY2Y2)

(1− εY2Y2)−1(1 + εY2Y2) −2ε(1− εY2Y2)−1Y2

)
and

y3g3 =

(
(1− εY3Y3)−1(1 + εY3Y3) −2ε(1− εY3Y3)−1Y3

−2Y3(1− εY3Y3)−1 (1− εY3Y3)−1(1 + εY3Y3)

)
From these expression it is straightforward to check that if xs′ and yg match, and whenX2, X3, X4

and Y2, Y3 are close to 0, then

X2X2 ∼ −εY2Y2, X3X4 ∼ εY3Y3.

It remains to treat X1 and Y1. Write

x1s
′
1 =

(
A′1 ∗
∗ ∗

)
.

A little computation gives 2A1A1 − 1 is a rational function in X1α and αα. Its power series

expansion (in the variable t = X1α) is ξ′1(X1α) where ξ′1 with coefficients in rational functions of

αα and the first few terms are

2αα− 1− 8t(1− αα) + · · ·

The power series is convergent when X1α is sufficiently close to zero.
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Write

y1g1θ(y1g1)−1 =

(
A1 ∗
∗ ∗

)
.

A little computation gives A1 is a rational function in εββ and Y1β. Its power series expansion (in

the variable t = Y1β is ξ̃1(Y1β) where ξ1 is a power series whose coefficients are rational functions

in εββ and the first few terms are

(1 + εββ)(1− εββ)−1 − 8t(1− εββ)−1 + · · ·

The power series is convergent when Y1β is sufficiently close to zero.

That xs′ and yg match implies that ξ′1(X1α) ∼ ξ̃1(Y1β). By assumption we have −(1 −
αα)(αα)−1 = εββ and det(1 − αα) 6= 0. This implies that the constant terms of ξ′1 and ξ̃1 equal.

So there is a power series ξ1 with coefficients in αα of the form

t(1− αα)−1(αα) + · · · ,

such that ξ1(X1α) ∼ Y1β. �

Proof of Theorem 6.3. Let f ′ ∈ S(S′(F ))0. We prove that there is an f ∈ S(G(F ))0 that matches

it. The other direction is similar. By lemma 6.4, it is enough to prove such an f exists locally

near every semisimple point s′. Moreover precisely, we will prove that for any semisimple point

s′ ∈ S′(F ), there is an f ∈ S(G(F ))0 such that

(6.3) κS
′
(xs′)OS

′
(xs′, f ′) = κG(yg)OG(yg, f)

for all matching regular semisimple xs′ ∈ S′(F ) and yg ∈ G(F ) when x and y are sufficiently close

to 1.

We use semisimple descent at the point s′. First according to the computation in the proof of

Lemma 6.9 when X = ψ′(xs′) ∈ Ns′ is sufficiently close to 0, we have that κS
′
(xs′) is a constant

multiple of κNs′ (X).

Let us now apply Proposition 6.7 to the orbital integrals OS
′
(xs′, f ′). There is a small enough

H ′i-invariant neighbourhood V ′i ⊂ M ′i of 0, and a function f ′s′ ∈ S(ψ′(V ′1 × V ′2 × V ′3)) such that for

all xs′ ∈ V ′1 × V ′2 × V ′3, we have

κS
′
(xs′)OS

′
(xs′, f ′) = κNs′ (X)ONs′ (X, f ′s′).

We put U ′i = ψ′i(V ′i), i = 1, 2, 3, V ′ = V ′1 × V ′2 × V ′3, U ′ = ψ′(V ′) = U ′1 × U ′2 × U ′3.

For i = 1, 2, 3, by shrinking Vi, we may assume that the neighbourhood V ′i such that Lemma 6.9

holds. We can find a power series ξ1 with coefficients in rational functions of αα such that if xs′

and yg match and xis
′
i ∈ V ′i, i = 1, 2, 3, then

ξ1(X1α) ∼ Y1β, X2X2 ∼ −εY2Y2, X3X4 ∼ εY3Y3.
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Shrinking V ′1 further if necessary, we may assume that X1 7→ ξ1(X1α)α−1 defines a bijection

from U1 to its image in V ′1 . Let ξ : U ′ → Ns′ be the map

ξ(X1, X2, (X3, X4)) = (ξ1(X1α)α−1, X2, (X3, X4)).

Note that this map is H ′s′-equivariant. Then ξ(U ′) is a neighbourhood of 0 ∈ Ns′ and ξ is a bijection

from U ′ to its image. Moreover κNs′ (X) = aκNs′ (ξ(X)) if X ∈ U ′, where a is a nonzero constant.

Define a function f̃ ′s′

f̃ ′s′(X) =

af
′
s′(ξ
−1(X)), X ∈ ξ(U ′),

0, X 6∈ ξ(U ′).

Then we have

κNs′ (X)ONs′ (X, f ′s′) = κNs′ (ξ′(X))ONs′ (ξ′(X), f̃ ′s′),

for all X ∈ ξ(U ′). We view f ′s′ as an function on Ns′ via extension by zero. Since f ′ ∈ S(S′(F ))0,

we conclude that f̃ ′s′ ∈ S(Ns′)0.

By Proposition 6.6 there is an fg ∈ S(Ng)0 that matches f̃ ′s′ , i.e.

κNs′ (ξ(X))ONs′ (ξ(X), f̃ ′s′) = κNg(Y )ONg(Y, fg),

for all regular semisimple matching ξ(X) ∈ ξ(U ′) and Y ∈ Ng.

As in the case of S′, when Y is sufficiently close to 0 in Ng, we have κG(yg) equals a constant

multiple of κNg(Y ). Applying Proposition 6.7 in the converse direction, we conclude that there is

an Hs-invariant neighbourhood V of g in Ng, and an f ∈ S(G(F )) such that

κNg(Y )ONs(Y, fg) = κG(yg)OS(yg, f)

for all yg ∈ V. Since fg ∈ S(Ng)0 we conclude that f ∈ S(G(F ))0. Shrinking V if necessary, we

may assume that if yg ∈ V and xs′ ∈ S′(F ) match then xs′ ∈ V ′. Then we conclude a chain of

equalities

κG(yg)OS(yg, f) = κNg(Y )ONs(Y, fg) = κNs′ (ξ(X))ONs′ (ξ(X), f̃ ′s′)

= κNs′ (X)ONs′ (X, f ′s′) = κS
′
(xs′)OS

′
(xs′, f ′)

when xs′ ∈ V ′ and yg ∈ V match. This proves (6.3) and thus Theorem 6.3. �

7. The fundamental lemma

7.1. The fundamental lemma. Assume that E/F is unramified with odd residue characteristic.

Let η̃(x) = (−1)valE(x) be the unique unramified character that extends η to E×. Let τ ∈ o×E be a

purely imaginary element which is used in the definition of the transfer factor κS
′

(cf. (6.1)).

Theorem 7.1. Let s′ = s′(α) ∈ S′(F ) and g = g(β) ∈ G(F ) be matching regular semisimple

elements. Then

(7.1) κS
′
(s′)OS

′
(s′,1S′(oF )) = κG(g)OG(g,1G(oF )).
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It is straightforward to see that this theorem implies Theorem 2.2. The rest of this section is

devoted to prove this theorem. We distinguish two cases depending on αα being elliptic or not.

The elliptic case will be deduced from the base change fundamental lemma and the calculations

in [Guo96]. The nonelliptic case will be treated using the parabolic descent and induction on n.

Before we prove the theorem, let us first explain that the validity of (7.1) is independent of the

character χ. In fact, the left hand side equals

χ(−α)

∫
1S′(oF )

((
h−1

1

h−1
2

)(
α 1

1− αα −α

)(
h1

h2

))
χ(h2h

−1
2 )η̃(h1h2)dh1dh2.

Since deth2h
−1
2 ∈ o×E and χ is unramified, the above expression equals

χ(−α)

∫
1S′(oF )

((
h−1

1

h−1
2

)(
α 1

1− αα −α

)(
h1

h2

))
η̃(h1h2)dh1dh2.

The right hand side of (7.1) equals∫
1G(oF )

((
g−1

g−1

)(
1 β

β 1

)(
h

h

))
χ(g−1h)dgdh.

Taking determinant we see that the integrand is nonzero only when

det(gg)−1 det(1− ββ) det(hh) ∈ o×F .

Recall that s′(α) and g(β) match if −(1 − αα)(αα)−1 and ββ have the same characteristic poly-

nomial, which implies that (1 − ββ)−1 and αα have the same characteristic polynomial. As χ is

unramified we obtain χ(g−1h) = χ(α) = χ(−α). Thus the right hand side of (7.1) equals

χ(−α)

∫
1G(oF )

((
g−1

g−1

)(
1 β

β 1

)(
h

h

))
dgdh.

Thus from now on we assume that χ is trivial. Under this assumption the transfer factors on

both sides of (7.1) are trivial.

7.2. The elliptic case. Put r = −(1− αα)(αα)−1 and

xr = |det(1− r)| = |detαα|−1, yr = |det r| = |det(1− αα)(αα)−1|.

In this subsection we always assume that αα and hence r are elliptic regular semisimple in GLn(F )

in the usual sense. Note that this in particular covers the base case of the induction n = 1.

Make a change of variable h1 7→ h2h1 on the left hand side of (7.1) we obtain

(7.2)

∫
1S′(oF )

((
h−1

1

1

)(
h2
−1
αh2 1

h−1
2 (1− αα)h2 −h−1

2 αh2

)(
h1

1

))
η̃(deth1)dh1dh2.

Here the integration is over h2 ∈ GLn(E)α,twisted\GLn(E) and h1 ∈ GLn(E).

The first observation is that if xr < 1, i.e. |detα| > 1, then h−1
2 αh2 6∈ Mn(oE) for any h2 and

therefore the integral vanishes. Moreover under this condition, the right hand side of (7.1) also

vanishes by [Guo96, (3.9)]. Thus Theorem 7.1 holds in this case.
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Assume from now on that xr ≥ 1. By [Guo96, Lemma 3.4], either yr ≤ xr = 1 or xr = yr > 1.

We distinguish two cases.

(1) yr ≤ xr = 1, i.e. detα ∈ o×E . Then yr = |det(1− αα)|.
We need to make use of a lemma of Kottwitz’s, cf. [Kot80, Lemma 8.8], which we recall in

a special case for readers’ convenience. The lemma says that if γ ∈ GLn(E) is conjugate to

an element in GLn(oE) and is regular semisimple, then we can find an element δ ∈ GLn(E)

such that γ = δδ = δδ and x−1γx ∈ GLn(oE) implies x−1δx ∈ GLn(oE). Moreover if

δ satisfies the above property and h ∈ GLn(E), then h−1δh ∈ GLn(oE) if and only if

h−1γh ∈ GLn(oE) and h ∈ GLn(F ) GLn(oE).

Let us come back to our setup. If αα is not conjugate to an element in GLn(oF ), by

considering the lower right block of the matrix, we see that (7.2) equals zero. Let us

assume that αα is conjugate to an element in GLn(oF ). We first apply this lemma to

γ = αα. We may further assume that α = δ has the property described in the lemma

of Kottwitz’s. We then conclude that h2 ∈ GLn(F ) GL(oE). Thus we may replace the

outer integral in (7.2) by h2 ∈ GLn(F )α\GLn(F ). Here though α might not be in GLn(F )

but in GLn(E), the group GLn(F )α stands for all h ∈ GLn(F ) that commutes with α.

We note that GLn(F )α = GLn(F )αα. Indeed as explained in [AC89, Chapter 1, Proof

of Lemma 1.1], as algebraic groups over F , the group GLn(E)α,twisted is an inner form of

GLn(F )αα. Since αα is regular semisimple, both are tori over F and hence are canonically

isomorphic, which implies that GLn(E)α,twisted = GLn(F )αα. This in particular implies that

if h ∈ GLn(E)α,twisted then h ∈ GLn(F ) and thus GLn(F )α = GLn(E)α,twisted = GLn(F )αα.

Therefore we may replace the outer integral by h2 ∈ GLn(F )αα\GLn(F ).

Now h2 ∈ GLn(F ) and we apply the lemma again to γ = h−1
2 ααh2, and δ = h−1

2 αh2.

Clearly this γ and δ again satisfy the conditions in the lemma of Kottwitz’s. By consider

the upper left corner of the matrix in the integrand, we conclude that h1 ∈ GLn(F ) GL(oE)

and we may replace the outer integral in (7.2) by h1 ∈ GLn(F ).

The domain of integral in (7.2) is thus equivalent to the four conditions

h−1
1 h−1

2 αh2h1, h
−1
2 αh2 ∈ GLn(oE), h−1

1 , h−1
2 (1− αα)h2h1 ∈Mn(oF ).

As α satisfies the conditions in Kottwitz’s lemma, the first two conditions are implied by

the other two. To see this, observe that h−1
1 and h−1

2 (1−αα)h2h1 being in Mn(oF ) implies

both

h−1
2 (1− αα)h2, h−1

1 h−1
2 (1− αα)h2h1

are in Mn(oF ). As we have assume that detα ∈ o×E , we conclude that

h−1
2 ααh2, h−1

1 h−1
2 ααh2h1

are in GLn(oF ). That α satisfies the conditions in the lemma of Kottwitz’s implies

h−1
1 h−1

2 αh2h1, h−1
2 αh2
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are both in GLn(oE).

The integral (7.2) thus simplifies to∫
1Mn(oF )×Mn(oF )(h

−1
2 (1− αα)(αα)−1h2h1, h

−1
1 )η(deth1)dh1dh2,

where the domain of integration is h1 ∈ GLn(F ) and h2 ∈ GLn(F )αα\GLn(F ).

In [Guo96, Lemma 3.5], a Hecke function Ψr on GLn(F ) is defined. By the calculation

in [Guo96, p. 137], under the assumption that yr ≤ xr = 1, this function equals

g 7→
∫

GLn(F )
1{X,Y ∈Mn(oF ), |detXY |=yr}(gh1, h

−1
1 )η(h1)dh1.

Therefore (7.2) equals

(7.3)

∫
GLn(F )αα\GLn(F )

Ψr(h
−1
2 rh2)dh2.

The right hand side of (7.1) is exactly the orbital integral appearing in [Guo96]. For

any (twisted) elliptic regular semisimple β ∈ GLn(E), a Heck function Φβ on GLn(E) is

defined in [Guo96, Lemma 3.6]. By the calculation in [Guo96, p. 139], under the assumption

yr ≤ xr = 1, Φβ is the characteristic function of

{X ∈Mn(oE), |detX| = yr}.

By [Guo96, Lemma 3.6] the right hand side of (7.1) equals

(7.4)

∫
GLn(E)β,twisted\GLn(E)

Φβ(h−1βh)dh.

If αα is not conjugate to an element in GLn(oF ), then neither is 1 − ββ. In this case

the above integral of Φβ equals zero so both sides of (7.1) equal zero. Now assume that αα

is conjugate to an element in GLn(oF ). Let H(GLn(E)) and H(GLn(F )) be the spherical

Hecke algebra of GLn(E) and GLn(F ) respectively, and

bc : H(GLn(E))→ H(GLn(F ))

the usual base change map. By [Guo96, Corollary 3.8], we have Ψr = bc(Φβ). Thus the

desired equality (7.1) is a consequence of the identities (7.3) (7.4), and the base change

fundamental lemma [AC89, Chapter 1, Theorem 4.5].

(2) Let us now assume that xr = yr > 1, i.e. |detα| < 1 and hence |det(1 − αα)| = 1. The

integrand of (7.2) is equivalent to the condition that

h−1
2 αh2, h−1

1 h2
−1
αh2h1, h−1

2 (1− αα)h2h1, h−1
1

are all in Mn(oE). Note that

|deth−1
1 | ≤ 1, |deth−1

2 (1− αα)h2h1| ≤ 1,

but

|det(1− αα)| = 1.
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It follows that |deth1| = 1 and hence h1 ∈ GLn(oE). Moreover since |detα| < 1, we have

h−1
2 αh2 ∈ Mn(oE) implies h−1

2 (1 − αα)h2 ∈ GLn(oE). It follows that the integral (7.2)

reduces to

(7.5)

∫
1Mn(oE)(h

−1
2 αh2)dh2.

By [Guo96, Lemma 3.6], and the calculation in [Guo96, p. 139-140], under the assumption

xr = yr > 1, the right hand side of (7.1) equals

(7.6)

∫
1{X−1∈Mn(oE),|detX|E=xr}(h

−1
2 βh2)dh2.

It remains to explain that the integrals (7.5) and (7.6) equal. First the condition

|detX|E = xr in (7.6) is redundant as twisted conjugation does not change the absolute

value of the determinant. As E/F is unramified, −1 ∈ NE× and hence there is a δ ∈ o×E
such that δδ = −1. Since αα is elliptic and |detαα| < 1, we conclude the absolute values

of its eigenvalues are all strictly less than one (in a fixed splitting field of F ). Thus

(1− αα)−
1
2 = 1−

(1
2

1

)
αα+

(1
2

2

)
(αα)2 + · · ·

is convergent and gives a well-defined element in GLn(F ). Put γ = δ(1 − αα)−
1
2 . By

assumption αα ∈ GLn(F ) and therefore γ commutes with α and thus (γαγα)−1 and ββ

have the same characteristic polynomial. Replacing β by its twisted conjugate, we may

assume that β−1 = γα. Therefore we need to explain

(7.7) (7.5) =

∫
1Mn(oE)(h

−1γαh)dh.

Assume that h−1αh ∈ Mn(oE). Then h−1ααh ∈ Mn(oE) and the absolute values of all

eigenvalues of it are strictly less than one. This implies

h−1γh = δ

(
1−

(1
2

1

)
h−1ααh+

(1
2

2

)
(h−1ααh)2 + · · ·

)
is convergent and is in GLn(oE) (note the only denominators in these binomial coefficients

are powers of 2). Thus h−1γαh ∈Mn(oE). Conversely if h−1γαh ∈Mn(oE), then h−1(1−
αα)−1ααh ∈ Mn(oE). Since 1 + h−1(1 − αα)−1ααh = h−1(1 − αα)−1h and the absolute

values of αα are all strictly less than one, we have h−1(1 − αα)h ∈ GLn(oE) and hence

h−1ααh ∈Mn(oE). Then as before we conclude that h−1γh ∈ GLn(oE) and hence h−1αh ∈
Mn(oE). This proves (7.7).

This finishes the proof of Theorem 7.1 when αα is elliptic.
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7.3. Parabolic descent. To handle the nonelliptic case, we make use of the parabolic descent of

the orbital integrals. In this subsection, we deviate from the setup from Theorem 7.1 and consider

OG
′
(x, f ′) where f ′ ∈ S(G′(F )) and x ∈ G′(F ) is regular semisimple in general.

We fix integers n1, n2 with n = n1 + n2. Let Q = LU be the parabolic subgroup of GL2n of the

form

L =


m

(1)
1 m

(2)
1

m
(1)
2 m

(2)
2

m
(3)
1 m

(4)
1

m
(3)
2 m

(4)
2

 , U =


1 u(1) u(2)

1

u(3) 1 u(4)

1

 ,

where

mi =

(
m

(1)
i m

(2)
i

m
(3)
i m

(4)
i

)
∈ GL2ni ,

(
u(1) u(2)

u(3) u(4)

)
∈M2n1×2n2 .

By definition

OG
′
(x, f ′) = (χη̃)−1(x)

∫
(H′×H′′)x\(H′×H′′)

f ′(h−1xh′′)χH′(h)(χη)−1(h′′)dhdh′′

Suppose x = (x1, x2) ∈ L(E) and xi ∈ GL2ni(E), i = 1, 2. Assume that xixi
−1 = s′(αi) is regular

semisimple in S′ni(F ). Here we add the subscript to indicate the size of the various groups and

symmetric spaces. Let r̃1, · · · , r̃n1 and s̃1, · · · , s̃n2 be the eigenvalues of α1α1 and α2α2 respectively

(in some fixed algebraic closure of F ). Consider∏
1≤i≤n1,1≤j≤n2

(r̃i − s̃j)−1.

Then one checks that it is an element in F . Let λ′ be its absolute value.

Let P = MN be the upper triangular parabolic subgroup of GLn(E) corresponding to the

partition n = n1 +n2. Here N is the unipotent radical, and M is the standard diagonal block Levi

subgroup. Write h = (h1, h2), h1, h2 ∈ GLn(E). We make use of the Iwasawa decomposition

hi = uimiki, i = 1, 2, h′′ = u′′m′′k′′

where ui ∈ N(E), mi ∈ M(E), ki ∈ GLn(oE), u′ ∈ U(F ), and k′ ∈ GL2n(oF ). Then OG
′
(x, f ′)

equals

(χη̃)−1(x)

∫
f ′K(m−1u−1xu′′m′′)δP (E)(m)−1δQ(F )(m

′′)−1χH′(m)(χη)−1(m′′)dudu′′dmdm′′,

where the domain of integration is (m,m′′) ∈ ((M ∩ L)(E) × L(F ))x\((M ∩ L)(E) × L(F )), u ∈
N(E) ∩ U(E), u′′ ∈ U(F ), and

f ′K(g) =

∫
KH′

∫
KH′′

f(k−1
1 gk2)χH′(k1)(χη)−1(k2)dk1dk2,

KH′ = GLn(oE)×GLn(oE) is a maximal open compact subgroup of H ′(F ) and KH′′ = GL2n(oF )

is a maximal open compact subgroup of H ′′(F ).
50



Let us now show that

δA : (N ∩ U)(E)× U(F )→ U(E), (u, u′′) 7→ u−1xu′′x−1

is bijective and submersive everywhere. Direct computation gives that the tangent map at (u, u′′)

is given by

(n ∩ u)(E)× u(E)→ u(E), (X,Y ) 7→ −u−1Xxu′′x−1 + u−1xu′′Y x−1.

Since u and u′′ are both unipotent, the determinant at any (u, u′′) equals the determinant at (1, 1).

At the point (1, 1), the tangent can be more explicitly written as

Mn1×n2(E)×Mn1×n2(E)×M2n1×2n2(F )→M2n1×2n2(E),

and

(X1, X2, Y ) 7→ −

(
X1

X2

)
+ x1Y x

−1
2 .

Let ρ(x) be this map and we put

∆(x) = δ
1
2

Q(E)(x)|det ρ(x)|−1.

This will be computed later. We make a change of variable u−1xu′ 7→ wx where w ∈ U(E). Then

we conclude that the orbital integral OG
′
(x, f ′) equals

(χη̃)−1(x)

∫
δ
− 1

2

Q(E)(x)∆(x)f ′K(m−1wxm′′)χH′(m)(χη)−1(m′′)δP (E)(m)−1δQ(F )(m
′′)−1dwdmdm′′.

We note that δP (E)(m) = δQ(E)(m)
1
2 . Therefore a change of variable w 7→ mwm−1 yields that the

above integral equals

(χη̃)−1(x)

∫
∆(x)f ′K(wm−1xm′′)(χη)−1(m′)δQ(E)(m

−1xm′′)−
1
2 dwdmdm′′.

Put

f ′Q(x) = δQ(E)(x)−
1
2

∫
U ′′(E)

f ′K(wx)dw, x ∈ L(E).

Then f ′Q ∈ S(L(E)). The map f ′ 7→ f ′Q is the well-known parabolic descent map. Thus

OG
′
(x, f ′) = ∆(x)OL(x, f ′Q).

It remains to compute ∆(x). The determinant of the map ρ(x) is the same as the determinant

of the map

M2n1×2n2(F )→Mn1×n2(E)×Mn1×n2(E), Y 7→ p(x1Y x
−1
2 )

where p is the projection of a matrix in M2n1×2n2(E) to Mn1×n2(E)×Mn1×n2(E), the upper right

and lower left corner. As we are merely computing determinants, we may pass to the algebraic

closure and assume that F is algebraically close. Then E is identified with F × F and the Galois

conjugation exchanges two components in F × F .
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Recall that xx−1 = s′(α) and α =

(
α1

α2

)
. One checks readily that ∆(x) depends only on

the conjugacy class of αiαi. Therefore we may assume that αi is diagonal

αi =


a

(i)
1

. . .

a
(i)
ni

 ∈ GLni(F × F ), a
(i)
j = (b

(i)
j , c

(i)
j ) ∈ F× × F×.

and

xi = (x̃i, 1) ∈ GL2ni(F )×GL2ni(F ), x̃i =

(
B(i) 1

1−B(i)C(i) −C(i)

)
,

and

B(i) =


b
(i)
1

. . .

b
(i)
ni

 , C(i) =


c

(i)
1

. . .

c
(i)
ni

 ∈ GLni(F ).

With these choices, the determinant we would like to compute is the product of various determinants

of the linear transforms of the form

M2×2(F )→ F × F × F × F, Y 7→ pst

( b
(1)
s 1

1− b(1)
s c

(1)
s −c(1)

s

)
Y

(
b
(2)
t 1

1− b(2)
t c

(2)
t −c(2)

t

)−1

, Y


where pst is the projection to the upper right and lower left corner, and the product ranges over

all 1 ≤ s ≤ n1 and 1 ≤ t ≤ n2. Direct computation gives that the determinant is b
(1)
s c

(1)
s − b(2)

t c
(2)
t ,

which in term equals a
(1)
s a

(1)
s − a(2)

t a
(2)
t . According the special form of αi we took, we have

a
(1)
i a

(1)
i − a

(2)
j a

(2)
j = r̃i − t̃j .

Moreover δQ(E)(x) = 1. It follows that ∆(x) = λ′.

We summarize the above computation in the following proposition.

Proposition 7.2. Let the notation be as above. Then

OG
′
(x, f ′) = λ′ ·OL(x, f ′Q).

7.4. Reduction to the elliptic case. Let us come back to the setup of Theorem 7.1. Assume that

αα ∈ GLn(E) is regular semisimple but not elliptic (in the usual sense). Then we can find positive

integers n1, n2 with n1 + n2 = n, P = MN be the standard blocked upper triangular parabolic

subgroup of GLn corresponding to this partition, and α is twisted conjugate to

(
α1

α2

)
∈M(E).

Since s′(α) and g(β) match, we may find β is twisted conjugate to

(
β1

β2

)
∈M(E), s′(αi) ∈ S′2ni

matches g(βi) ∈ GL2ni(E), i = 1, 2.

Put f ′ = 1GL2n(oE) in Proposition 7.2. Since f ′Q = 1GL2n1 (oE)⊗1GL2n2 (oE), and

OG
′
(x,1GL2n(oE)) = OS

′
(xx−1,1S′(oF )),
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we conclude

OS
′
(s′(α),1S′(oF )) = λ′OS

′
2n1 (s′(α1),1S′2n1 (oF ))O

S′2n2 (s′(α2),1S′2n2 (oF )).

Let r1, · · · , rn1 be the eigenvalues of β1β1 and s1, · · · , sn2 be the eigenvalues of β2β2 (in some

fixed algebraic closure of F ). Put

λ =
|det(1− β1β1)|n2 |det(1− β2β2)|n1

|
∏

1≤i≤n1,1≤j≤n2
(ri − sj)|

.

Then one checks that λ ∈ F . By [Guo96, Proposition 2.2] we have

OGL2n(g(β),1GL2n(oF )) = λOGL2n1 (g(β1),1GL2n1 (oF ))O
GL2n2 (g(β2),1GL2n2 (oF )).

Since s′(αi) and g(βi) match, i = 1, 2, the elements βiβi and −(1−αiαi)(αiαi)−1 have the same

characteristic polynomial. It follows that

λ′ = λ.

Then Theorem 7.1 follows by induction on n. This finishes the proof of Theorem 7.1.

Appendix A. Convergence of the elliptic part

The goal of this appendix is to explain the absolute convergence of the elliptic part of the relative

trace formula. We will prove

(A.1)

∫
H′(F )\H′(AF )1

∑
x∈S′(F )ell

|f ′(h−1xh)|dh

is convergent for all f ∈ S(S′(AF )), where

H ′(AF )1 = {(h1, h2) ∈ H ′(AF ) | |deth1h2| = 1}.

This implies the absolute convergence of (2.2). The proof of the absolute convergence of (2.1) is

similar.

Let P0 be the usual upper triangular Borel subgroup of GLn and P ′ = ResE/F P0 × P0 be a

minimal parabolic subgroup of H ′. Let c be a real number with 0 < c < 1 and Tc the subset of the

diagonal torus in GL2n(R) consisting of

{(a1, · · · , an, b1, · · · , bn) ∈ (R>0)2n | aia−1
i+1 ≥ c, bib

−1
i+1 ≥ c, a1 · · · anb1 · · · bn = 1}.

Let Tc be diagonally embedded in H ′(F∞) and identify it with its image. Fix a maximal compact

subgroup K of H ′(AF ). Then reduction theory gives that there is a compact subgroup ω ⊂ P ′(AF ),

such that H ′(AF )1 = H ′(F )G and

G = {pak | p ∈ ω, a ∈ Tc, k ∈ K}.

Thus we only need to prove that∫
ω

∫
Tc

∫
K

∑
x∈S′(F )ell

|f ′((pak)−1x(pak))|δP ′(a)−1dkdadp
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is absolutely convergent. By the definition of Tc, there is a compact subset Ω of H ′(AF ) such that

if p ∈ ω, a ∈ Tc, k ∈ K, then a−1pak ∈ Ω. It follows that we only need to prove that∫
Tc

∑
x∈S′(F )ell

|f ′(a−1xa)|δP ′(a)−1da

is absolutely convergent for all Schwartz functions f ′ on S′(AF ). It is enough to consider f ′ =

⊗vf ′v, where f ′v is a Schwartz function on S′(Fv). Since f ′v is compactly supported if v - ∞ and

Tc ⊂ H ′(Fv), we just need to prove that

(A.2)

∫
Tc

∑
x∈S′(L)ell

|f ′∞(a−1xa)|δP ′(a)−1da

is absolutely convergent for any Schwartz function f ′∞ on S′(F∞) and any fractional ideal L of oF .

Note that L is discrete in F∞.

We fix some notation. Let v | ∞ be an infinite place we write |·| for the usual absolute value.

If x = (xv) ∈ F∞ we write |x| for maxv|∞|xv|. If X = (xij) ∈ Mn(F∞), then we write ‖X‖ =

maxij |xij |.
Let us divide the integral into two pieces depending on a1 · · · an > 1 or not. We will treat the

case a1 · · · an > 1. The case a1 · · · an < 1 can be handled in exactly the same way by noting that

b1 · · · bn > 1 under this assumption.

From now on assume that a1 · · · an > 1. Then b1 · · · bn = (a1 · · · an)−1 < 1.

Since L is a fractional ideal, there is a constant cL > 0 such that if x ∈ S′(L) and u is a nonzero

entry of x then |u| ≥ cL. This is where the discreteness of L in F∞ is used.

We write x ∈ S′(F∞) as

(
A B

C D

)
. Fix a positive polynomial P1 such that

P1(x) ≥ max{‖A‖, ‖B‖, ‖C‖, ‖D‖}.

Here polynomial means that we view S′(F∞) as a real manifold and a P1 is a real positive polyno-

mial, in other worlds, if aij is an entry of A, then both aij and aij might appear in the polynomial

P1.

If x =

(
A B

C D

)
∈ S′(F∞)ell, we write A = (xij). Since the characteristic polynomial of AA is

irreducible over F , for every i0 = 1, · · · , n−1, there is a j ≥ i0 + 1 and i ≤ i0 such that xji 6= 0 (for

otherwise A is contained in a proper parabolic subgroup of GLn(E)). Thus |xji| ≥ cL. Something

similar holds for the entries of D. This is where the condition “elliptic” is used.

By the choice of P1 we have

P1(a−1xa) ≥ |a−1
j xjiai| ≥ cLaia−1

j .

Since a ∈ Tc we have

ai ≥ cai+1 ≥ · · · ≥ ci0−iai0 , a−1
j ≥ ca

−1
j−1 ≥ · · · ≥ c

j−i0−1a−1
i0+1.
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Therefore

(A.3) P1(a−1xa) ≥ cLcj−i−1ai0a
−1
i0+1 ≥ cLc

n−2ai0a
−1
i0+1.

Note that we used the fact that 0 < c < 1. So we obtain

a−1
n = (a1 · · · an)−

1
n

n−1∏
i=1

(aia
−1
i+1)

i
n ≤ (a1 · · · an)−

1
n

(
c−1
L c−(n−2)P1(a−1xa)

)n−2
2
,

and

a1 = (a1 · · · an)
1
n

n−1∏
i=1

(aia
−1
i+1)

n−i
n ≤ (a1 · · · an)

1
n

(
c−1
L c−(n−2)P1(a−1xa)

)n−2
2
,

Similarly by considering D, we conclude

(A.4) P1(a−1xa) ≥ cLcn−2bi0b
−1
i0+1,

and

b−1
n ≤ (b1 · · · bn)−

1
n

(
c−1
L c−(n−2)P1(a−1xa)

)n−2
2
, b1 ≤ (b1 · · · bn)

1
n

(
c−1
L c−(n−2)P1(a−1xa)

)n−2
2
.

For any i, j = 1, · · · , n we also have

P1(a−1xa) ≥ |a−1
i xijaj |,

and thus

(A.5)

|xij | ≤ aia−1
j P1(a−1xa) ≤ c−(i−1)−(n−j)a1a

−1
n P1(a−1xa) ≤ c−(2n−2)

(
c−1
L c−(n−2)P1(a−1xa)

)n−2
.

Write C = (zij), D = (wij). Similar considerations also give

(A.6)
|zij | ≤ (a1 · · · an)−

1
n (b1 · · · bn)

1
n c−(2n−2)

(
c−1
L c−(n−2)P1(a−1xa)

)n−2

= (a1 · · · an)−
2
n c−(2n−2)

(
c−1
L c−(n−2)P1(a−1xa)

)n−2
,

and

(A.7) |wij | ≤ aia−1
j P1(a−1xa) ≤ c−(2n−2)

(
c−1
L c−(n−2)P1(a−1xa)

)n−2
.

To summarize, multiplying the inequalities (A.5), (A.6) and (A.7), we obtain a positive polyno-

mial function P on S′(F∞) such that

(A.8) ‖A‖‖C‖‖D‖ ≤ (a1 · · · an)−
2
nP (a−1xa).

Let us now fix a positive homogeneous polynomial Q in Mn(F∞) of a large degree M . Consider

φ(x) = f ′∞(x)Q(B).

This is still a Schwartz function on S′(F∞). Then

(A.2) =

∫ ∑
x∈S′(L)ell

φ(a−1xa)(a1 · · · an)2MQ(B)−1δP ′(a)−1da.
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where as before we write each x =

(
A B

C D

)
.

Since φ is Schwartz, it is bounded by the reciprocal of any polynomial and in particular by P−N

when N is large enough, thus by (A.8) we have

(A.2) ≤
∫ ∑

x∈S′(L)ell

(‖A‖‖C‖‖D‖)−N (a1 · · · an)
−2N
n (a1 · · · an)2MQ(B)−1δP ′(a)−1da

=
∑

x∈S′(L)ell

(‖A‖‖C‖‖D‖)−NQ(B)−1 ×
∫

(a1 · · · an)
−2N
n (a1 · · · an)2MδP ′(a)−1da.

Here N is a sufficiently large real number, and the integration is over a ∈ Tc and a1 · · · an > 1. The

point is that the variables in the integral, i.e. a1, · · · , an, b1, · · · , bn, and the variables in the sum,

i.e. x =

(
A B

C D

)
, are separated. Thus when N >> M >> 0, both the sum and the integral are

convergent. This proves the convergence of (A.2) and hence the absolute convergence of (2.2).

Appendix B. Elliptic representations

The goal of this appendix is to sketch a proof of Proposition 3.4. To simplify notation, we fix

in this subsection a nonarchimedean nonsplit place v of F and suppress it from all notation. Thus

F stands for a nonarchimedean local field of characteristic zero. To shorten notation we also write

H for its group of F -points H(F ). The equalities in the proof usually depend on the choice of

the measures. But such choices are not essential to the final result. Thus we should interpret

the equalities in the proof as equalities up to a nonzero constant depending only the choice of the

measures.

B.1. Results on orbital integrals. First we need some results on the nilpotent orbital integrals

and Shalika germ. let s be the tangent space of S at 1, with an action of H by conjugation. An

element x ∈ s is called regular semisimple if Hx is a torus of dimension n, and it is called elliptic if

in addition Hx is an elliptic torus modulo the split center of H. Regular semisimple orbital integrals

has been defined and studied in [Zha15a]. An H-orbit in s is called nilpotent if its closure contains

0. Nilpotent orbital integrals have been defined in [Guo98]. In particular if O is an nilpotent orbit

in s, it is proved in [Guo98] that the integral∫
O
f(x)dx, f ∈ S(s),

is absolutely convergent, where dx is an invariant Radon measure on O. Moreover it is proved that

the Fourier transform µ̂O of the distribution µO is a locally integrable function on s. If O = {0}
is the smallest nilpotent orbit, then obviously µ̂O(X) is a nonzero constant. More importantly µO

and µ̂O have the following homogeneity property. If t ∈ F×, then

µO(ft) = |t|dimOµO(f), ft(X) = f(t−1X).
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This follows from the explicit formula for µO given in [Guo98, Proposition 5.1]. Taking Fourier

transform we conclude that

µ̂O(ft) = |t|2n2−dimOµ̂O(f).

The most important point is that dimO < n2 for all O, and thus

(B.1) dimO < 2n2 − dimO′

for any two nilpotent orbits O and O′.
As in the classical situation of Harish-Chandra, we have the Shalika germs. Let exp : s→ S be

the exponential map, defined in an H-invariant neighbourhood 0 ∈ s. For any f ∈ S(G), we define

in an H-invariant neighbourhood of 0 ∈ s a function f\ by requiring that∫
H
f(gh)χ(gh)−1dh = f\(X)

if gθ(g)−1 = expX. There is a unique H-invariant real valued function ΓO on the regular semisimple

locus of s for each nilpotent orbit O with the following properties.

(1) For any f ∈ S(s), there is an H-invariant neighbourhood Uf of 0 ∈ s such that

(B.2) OG(g, f) =
∑
O

ΓO(X)µO(f\).

for all regular semisimple g ∈ Uf , such that gθ(g)−1 = exp(X).

(2) For all t ∈ F× and all regular semisimple X, we have

ΓO(tX) = |t|− dimOΓO(X).

Lemma B.1. The Shalika germs ΓO are linearly independent. They are not identically zero in any

neighbourhood of 0. If O = {0} the minimal nilpotent orbit, then Γ0(X) = 0 if X is not elliptic in

s.

Proof. The linear independence is proved by exactly the same argument as in the classical case of

Harish-Chandra. The key to this argument is the inequality (B.1), and the rest of the argument

is essentially formal, cf. [Kot05, Section 27] and [Xue22, Section 7]. The fact that Γ0(X) = 0 if

X is not elliptic is proved using parabolic descent [Zha15a, Subsection 6.1] and the homogeneity

property of ΓO’s. �

B.2. Characters of supercuspidal representations. Now we recall that by [BP18, Proposi-

tion 4.2.1], in the case π being supercuspidal, up to some nonzero constant depending only on the

choice of the measures and the linear form `, we have

(B.3) `(v)`(w) =

∫
Z\H
〈v, π(h)w〉χ(h)−1dh

for all v, w ∈ π. Thus if ϕ ∈ S(G) then

Jπ(ϕ) =
∑
v

∫
Z\H
〈π(ϕ)v, π(h)v〉χ(h)−1dh,
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where the sum runs over an orthonormal basis of π. By [RR96, Corollary 5.2] the distribution

Jπ agrees with a locally constant function on the regular semisimple locus in G. We denote this

function by Θπ.

Recall from (2.5) that we have defined a transfer factor

κG(g) = χ(A), g−1 =

(
A ∗
∗ ∗

)
for all regular semisimple g ∈ G. We put Θ̃π(g) = κG(g)Θπ(g). Then Θ̃π is left and right H-

invariant, and we can view it as a function on S which is H-conjugate invariant. By [RR96,

Theorem 7.11], if X is in a small neighbourhood of 0 ∈ s, g ∈ G, gθ(g)−1 = expX, we have

(B.4) Θ̃π(g) =
∑
O
cOµ̂O(X).

The case treated in [RR96] does not involve the character, but the same argument goes through

without change in our setup.

Lemma B.2. Let v, w ∈ π, and f(g) = 〈v, π(g)w〉 be the matrix coefficient. Then we have

(B.5) κG(g)OG(g, f) = Θ̃π(g)

∫
Z\H

f(h)χ(h)−1dh,

for all elliptic g in G.

Proof. It is enough to prove that for any ϕ ∈ S(G) supported in the elliptic locus, we have

(B.6)

∫
G
ϕ(g)κG(g)OG(g, f)dg = Jπ(ϕκG)

∫
Z\H

f(h)χ(h)−1dh.

Though κG is not defined on all G, as ϕ is locally constant and compactly supported in the elliptic

locus, ϕκG ∈ S(G) and Jπ(ϕκG) makes sense.

Let us first note that because (H ×H)g is an elliptic torus modulo the center of G, up to some

nonzero constant depending only on the choice of the measures, the orbital integral of f equals

κG(g)

∫
Z\H×Z\H

f(h−1
1 gh2)χ(h−1

1 h2)−1dh1dh2.

As ϕ is supported on the elliptic locus, we have∫
G
ϕ(g)κG(g)OG(g, f)dg =

∫
G

∫
Z\H×Z\H

ϕ(g)κG(g)f(h−1
1 gh2)χ(h−1

1 h2)−1dh1dh2dg.

The right hand of this integral is absolutely convergent. Thus we may change the order of integration

and conclude that this integral equals

(B.7)

∫
Z\H×Z\H

〈v, π(h−1
1 )π(ϕκG)π(h2)w〉χ(h−1

1 h2)−1dh1dh2.

Since π is admissible, we may find elements v1, · · · , vr and w1, · · · , wr in π such that

π(ϕκG)v0 =

r∑
i=1

〈v0, vi〉wi,
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for all v0 ∈ π. It then follows by (B.3) that

(B.7) =

r∑
i=1

`(v)`(vi)`(wi)`(w).

We also have

Jπ(ϕκG) =
∑
u

`(π(ϕκG)u)`(u) =
∑
u

r∑
i=1

〈u, vi〉`(wi)`(u) =
r∑
i=1

`(wi)`(vi).

Thus (B.6) follows by another application of (B.3). �

Proof of Proposition 3.4. Let X be in a small neighbourhood of 0 ∈ s, g ∈ G, gθ(g)−1 = expX.

The character expansion (B.4) gives

Θ̃π(g) =
∑
O
cOµ̂O(X).

Note that X is elliptic if and only if g is elliptic. Since O = {0} is the only nilpotent orbit with

µ̂O(tX) = µ̂O(X) for all X ∈ s and t ∈ F×, to show that Θ̃π(g) 6= 0 for some elliptic g ∈ G which

is sufficiently close to 1, we only need to show that c0 6= 0.

We find a matrix coefficient f such that∫
Z\H

f(h)χ(h)−1dh 6= 0.

For this f we consider the expansion of both sides of (B.5) when g is close to 1 and is elliptic. We

have ∑
O

ΓO(X)µO(f\) =
∑
O
cOµ̂O(X)×

∫
Z\H

f(h)χ(h)−1dh.

The only terms on both sides of the expansion that are invariant under the scaling X → tX are

those corresponding to O = 0. Thus by the homogeneity property of ΓO and µ̂O, we conclude that

Γ0(X)µ0(f\) = c0µ̂0(X)×
∫
Z\H

f(h)χ(h)−1dh.

By our choice of f we have

µ0(f\) =

∫
Z\H

f(h)χ(h)−1dh 6= 0.

If c0 = 0, then Γ0(X) = 0 if X is elliptic in a neighbourhood of 0. By Lemma B.1, Γ0(Y ) = 0

if Y is not elliptic and hence is identically zero in a neighbourhood of 0. This is impossible by

Lemma B.1. Therefore c0 6= 0. �
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