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Abstract. We prove the local Gan–Gross–Prasad conjecture for Fourier–Jacobi models of real

unitary groups.
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1. Introduction

The goal of this paper is to prove the local Gan–Gross–Prasad (GGP) conjecture for Fourier–

Jacobi models on real unitary groups. This completes the proof of [GGP12, Conjecture 17.3] for

unitary groups in all cases. In the simplest case, i.e. unitary group are all compact, the Fourier–

Jacobi model essentially describes the restriction of the Weil representation of the metaplectic group

S̃p2n(R) to a maximal compact subgroup, which is a very classical subject of representation theory

and classical invariant theory.

1.1. Generic packets. By a character of C×, we mean a unitary character. It is conjugate self-dual

if χ is trivial on R>0. Any conjugate self-dual character is of the form

ξm(z) = zm(zz)−
m
2 .

for some integer m. It is of sign +1 (resp. −1) if m is even (resp. odd). If χ is a character of

C× we put χc(z) = χ(z). Put |z|C = zz. A quasi-character of C× is a continuous homomorphism

χ : C× → C×. Any quasi-character can be written uniquely as χ = ξm|·|sC for some m ∈ Z and

s ∈ C. It is a character if s is purely imaginary. Put Reχ = Re s.

Let ψ and ψC be additive characters of C given by

ψ(z) = e2π
√
−1(z+z), ψC(z) = ψ(

√
−1z) = e2π(z−z).
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Let n be a positive integer. An L-parameter for unitary groups in n variables is an n-dimensional

continuous semisimple representation of C×. As C× is abelian, we can write

(1.1) φ =
k⊕
i=1

ciξi ⊕
a⊕
i=1

(
ξk+i ⊕ ξc,−1

k+i

)
,

so that

• ξ1, · · · , ξk are distinct conjugate self-dual characters of C× of sign (−1)n−1, and c1, · · · , ck
are positive integers;

• ξk+1, · · · , ξk+a are (not necessarily distinct) quasi-characters that are not conjugate self-dual

characters of sign (−1)n−1 and Re ξk+i ≥ 0;

• n = c1 + · · ·+ ck + 2a.

The Vogan packet attached to φ, denoted by Πφ, is the (disjoint) union of all ΠV
φ as V ranges

over all (isomorphism classes of) hermitian spaces of dimension n,

Πφ =
⋃

V : dimV=n

ΠV
φ .

Each ΠV
φ is a finite set of irreducible representations of U(V ). Throughout this paper, by a repre-

sentation, we mean a smooth Fréchet representation of moderate growth. Put

φ0 =
k⊕
i=1

ciξi,

which is an L-parameter of unitary groups in n− 2a variables. There is a Vogan L-packet

Πφ0 =
⋃

V0: dimV0=n−2a

ΠV0
φ0

where ΠV0
φ0

is a finite set of limit of discrete series representations of U(V0). The packet Πφ can

be constructed from the limit of discrete series L-packet Πφ0 as follows. If V does not contain an

isotropic subspace of dimension a, then ΠV
φ = ∅. Assume that V contains an isotropic subspace

of dimension a, then let V0 ⊂ V be a hermitian space so that its orthogonal complement is a split

hermitian space of dimension 2a. We may take a parabolic subgroup P of U(V ) so that its Levi

subgroup is isomorphic to (C×)a ×U(V0). Let us temporarily order ξk+1, · · · , ξk+a so that

Re ξk+1 ≥ · · · ≥ Re ξk+a′ > 0 = Re ξk+a′+1 = · · ·Re ξk+a.

Let π0 ∈ ΠV0
φ0

. Then the parabolically induced representation

(1.2) Ind
U(V )
P ξk+1 ⊗ · · · ⊗ ξk+a ⊗ π0

has a unique irreducible Langlands quotient. Then ΠV
φ is the collection of all these Langlands

quotients where π0 ranges over ΠV0
φ0

. In short, taking Langlands quotients of parabolic inductions

gives a bijection between ΠV
φ and ΠV0

φ0
.
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The centralizer group Aφ is defined to be Aφ0 = (Z/2Z)k. We label elements in Aφ = Aφ0 as

(1.3)
k⊕
i=1

(Z/2Z)ai,

where ai is a symbol corresponding to ξi. Without saying the contrary we will follow this convention

of labeling characters in an L-parameter. To each representation π ∈ Πφ there is a character

η : Aφ → 〈±1〉 attached to it and this defines a bijection between Πφ and all characters of Aφ.

There is a similar bijection between Πφ0 and Aφ0 . The following diagram commutes

Πφ0
//

��

Hom(Aφ0 , 〈±1〉)

Πφ
// Hom(Aφ, 〈±1〉)

,

where the left arrow is the bijection given by the parabolic induction as before.

This bijection Πφ → Hom(Aφ, 〈±1〉) depends on the choice of an equivalence class of Whittaker

datum. When n is odd, we choose it to be the unique Whittaker datum (up to equivalence) of

U(n+1
2 , n−1

2 ). When n is even as explained in [GGP12, Section 10], this is equivalent to choosing

an additive character of C which is trivial on R. Throughout this paper, we will take this additive

character to be ψC.

We say that L-parameter φ is generic if Πφ contains a generic representation (with any fixed

Whittaker datum). We explained in [Xueb, Subsection 1.1] that if φ as (1.1) is generic, then Πφ

consists of irreducible parabolically induced representations of the form (1.2), where π0 is a limit

of discrete series representation and ranges over Πφ0 .

1.2. Fourier–Jacobi models. Let us introduce the Fourier–Jacobi models for real unitary groups.

Let W ⊂ V be skew-hermitian spaces so that V = W ⊕⊥Z where Z is a split skew-hermitian space

of dimention 2t. We fix a basis z±1, · · · , z±t of Z so that

qV (zi, z−j) = δij , i, j = ±1, · · · ,±t.

Let U be the unipotent radical of the parabolic subgroup of U(V ) stabilizing the flag of completely

isotropic subspaces

〈zt〉 ⊂ 〈zt, zt−1〉 ⊂ · · · ⊂ 〈zt, · · · , z1〉,

We define a character of U by

ψU (u) = ψ

(
−TrC/R

t−1∑
i=1

qV (z−i−1, uzi)

)
, u ∈ U.

If t = 0 or 1 we take ψU to be the trivial character. The group SV = U oU(W ) is called a Fourier–

Jacobi subgroup of U(V ). If t = 1 it is simply called a Jacobi subgroup. Then the character ψU

inflates to a character of SV .
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The same construction also applies to W+ = W ⊕⊥ 〈z1, z−1〉 and we obtain the Jacobi subgroup

SW+ of U(W+). Let µ be a conjugate self-dual character of C× of sign −1 and ω = ωψ,µ be the

Weil representation of SW+ , cf. Section 2 for a detailed explanation. There is a projection

SV → SW+

and ω inflates to a representation to SV which we also denote by ω. Since ψU is invariant under

the SW+ conjugation action, ν = ψU ⊗ ω is a representation of SV .

Let π and σ be irreducible representations of U(V ) and U(W ) respectively. We put

m(π, σ) = dim HomSV (π ⊗̂σ ⊗̂ ν,C).

By [SZ12,LS13], we have m(π, σ) ≤ 1.

Assume that π and σ lie in generic packets. Let (φπ, ηπ) and (φσ, ησ) be the parameters of π

and σ respectively. Let us write

φπ =

k⊕
i=1

ciχi ⊕
a⊕
i=1

(
χk+i ⊕ χc,−1

k+i

)
, φσ =

l⊕
j=1

diµj ⊕
b⊕

j=1

(
µl+j ⊕ µc,−1

l+j

)
,

and

Aφπ =

k⊕
i=1

(Z/2Z)ai, Aφσ =

l⊕
j=1

(Z/2Z)bj ,

following the convention in (1.3).

The main theorem of the paper is the following. It confirms [GGP12, Conjecture 17.3] in this

setup. In the theorem ε stands for the local root numbers, as defined in [GGP12, Section 5].

Theorem 1.1. Let the notation be as above. Then m(π, σ) 6= 0 if and only if

ηπ(ai) = ε(χi ⊗ φσ ⊗ µ−1, ψC), ησ(bj) = ε(φπ ⊗ µj ⊗ µ−1, ψC).

The proof of this theorem is standard. We first treat the basic case: t = 0 and π and σ both

being tempered. We prove it by reducing it to the local GGP conjecture for Bessel models, which

we have established in [Xuea]. In fact the theorem in this case has been almost proved in [Xuea],

with the condition m(π, σ) 6= 0 replaced by the nonvanishing of a certain explicit intertwining

map. We prove in Section 3 that these two conditions are equivalent. Once we have establish this

basic case, we reduce all the other cases to the basic case, by making use the Schwartz homology

theory [CS21] and the techniques developed in [Xueb].

The same method can be used to treat the local GGP conjecture for symplectic–metaplectic

groups. The lack of analogous results from [Xuea, Xueb] nevertheless makes the argument longer.

It seems hard to write both unitary and symplectic cases uniformly in one article while maintaining

good readability. Thus the symplectic case will be treated in subsequent work.
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1.3. Conventions and notation. Let G be a group, we denote by gR the Lie algebra, g the

complexification, U(g) the universal enveloping algebra of g, and Z(g) the center of U(g).

Let X(G) be the group of (algebraic) characters of G, andAG = HomZ(X(G),R), A∗G = X(G)⊗Z

R. There is a map

HG : G→ AG g 7→ (χ 7→ log|χ(g)|) .

For α ∈
√
−1A∗G and a representation π of G, we put

πα(g) = π(g)e〈HG(g),α〉.

By a representation of G, we mean a smooth Frechet representation of moderate growth. If (π,V)

the such a representation and is of finite length, then it is admissible, and we denote by (π∨,V∨)

the admissible dual.

The representation π is unitary if there is a G-invariant inner product on V. Thus π∨ ' π. We

denote by 〈−,−〉 and ‖−‖ the inner product and the induced norm on V respectively. Then V
completes to a Hilbert space V(0) with respect to this inner product, and the action π continuously

extends to this space, which we denote by π(0). For any k ≥ 0 we denote by (π(k),V(k)) the space

of order k smooth vectors in V(0) and the continuous action π(k) on it. Then V =
⋂
k V(k). Each

space V(k) is a Hilbert space itself, and V is a Frechet–Hilbert space.

The tensor product ⊗̂ means completed projective tensor product. For two Frechet–Hilbert

spaces we denote by ⊗̂h the completed Hilbert space tensor product.

By a tempered representation of a reductive group G, we mean a (unitary) representation weakly

contained in L2(G).

All groups we encounter in this paper are almost linear Nash groups, cf. [CS21, Section 1.3], and

thus we can speak of Schwartz functions on it. If G is a group and H is a subgroup, we let indGH

be the unnormalized Schwartz induction functor, cf. [CS21, Section 6.2]. We denote by IndGH the

normalized induction functor.

1.4. Acknowledgement. The author is partially supported by the NSF grant DMS #1901862

and DMS #2154352.

2. Representation of the Jacobi group

2.1. The oscillating representation. Let V be a symplectic space of dimension 2n over R. A

Heisenberg group H(V) is the unipotent group of the form V⊕ R, whose elements are denoted by

(v, z) and the addition law is given by

(v, z)(v′, z′) =

(
v + v′, z + z′ +

1

2
qV(v, v′)

)
.

We denote by Z the center of H(V). Fix maximal isotropic subspaces X and X′ of V with

V = X⊕ X′.
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We denote by ρ = ρψ the oscillator representation of H(V) on S(X), namely

(2.1) ρ((v + v′, z))φ(x) = ψ

(
z + qV (x, v′) +

1

2
qV (v, v′)

)
φ(x+ v), x, v ∈ X, v′ ∈ X∨.

This is the unique irreducible infinite dimensional unitary representation of H(V) with the central

character ψ.

We define a partial Fourier transform

S(X) ⊗̂ S(X)→ S(V), φ 7→ φ†,

where φ ∈ S(X) ⊗̂ S(X) ' S(X× X) and

φ†(v) =

∫
X
φ(x+

l

2
, x− l

2
)ψ(qV(x, l′))dx, v = l + l′, l ∈ X, l′ ∈ X∨.

Then

(2.2) 〈ρ(h(v, 0))φ1, φ2〉 = (φ1 ⊗ φ2)†(v).

In particular

v 7→ 〈ρ(h(v, 0))φ1, φ2〉

is a Schwartz function on V. Since partial Fourier transform preserves the inner product, we also

conclude that if φ1, φ2, φ3, φ4 ∈ S(X), then

(2.3)

∫
H(V)/Z

〈ρ(h)φ1, φ2〉〈ρ(h)φ3, φ4〉dh = 〈φ1, φ3〉〈φ4, φ2〉.

Let us define S(H(V), ψ) be the space of all smooth functions f on H(V) such that f(zh) =

ψ(z)f(h) for all h ∈ H(V) and z ∈ Z, and

sup
v∈V
|Df(h)| <∞

for all algebraic diffirential operators D on V. This is an algebra under the usual convolution, which

acts on S via ρψ as follows. If φ1, φ2, φ3 ∈ S(X) then we define∫
H(V)/Z

〈ρψ(h)φ1, φ2〉ρψ(h)φ3dh

to be the unique element in S(X) such that〈∫
H(V)/Z

〈ρψ(h)φ1, φ2〉ρψ(h)φ3dh, φ4

〉
=

∫
H(V)/Z

〈ρ(h)φ1, φ2〉〈ρ(h)φ3, φ4〉dh.

We introduce more notation. We fix a basis X1, · · · , Xn of X and a dual basis X ′1, · · · , X ′n in X′.
Using this basis we identify V with R2n. If v = (x1, · · · , x2n) ∈ V, then we put

‖v‖ = (x2
1 + · · ·+ x2

2n)
1
2 .
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The elements Xi, X
′
i are naturally viewed as elements in Lie(H(V )). Define the Sobolev norm of

order k on S by

‖φ‖k =
∑

a1+···+an+b1+···+bn≤k
‖ρψ(Xa1

1 · · ·X
an
n X

′,b1
1 · · ·X ′,bn

n )φ‖

Note that if we write x = (x1, · · · , xn) ∈ X, and we view φ as a Schwartz function on Rn, then

ρψ(Xi)φ = ∂xiφ, ρψ(X ′i)φ = (−2πxi)φ.

Thus ‖φ‖k really is the usual L2 Sobolev norm for function on Rn. The norm ‖·‖k depends on the

choice of the basis, but different choices lead to equivalent norms.

For later use we need a slightly more precise estimate.

Lemma 2.1. For any integer d > 0 there is a constant C, such that for all φ1, φ2 ∈ S(X) we have

|〈ρψ(h(v, 0))φ1, φ2〉| ≤ C(1 + ‖v‖2)−d‖φ1‖4d‖φ2‖4d.

Since ‖·‖4d continuously extends to S(X)(k) for k ≥ 4d+1, we conclude a posteriori by continuity

that the inequality holds for φ1, φ2 ∈ S(X)(k) when k ≥ 4d+ 1.

Proof. Write v = l + l′, l ∈ X, l′ ∈ X. Since

1 + ‖v‖2 ≤ 2(1 + ‖l‖2)(1 + ‖l′‖2)

we need to prove that

(2.4) (1 + ‖l‖2)d(1 + ‖l′‖2)d
∣∣∣∣∫

X
φ1(x+ l)φ2(x)ψ(qV(x, l′))dldl′

∣∣∣∣ ≤ C‖φ1‖4d‖φ2‖4d.

Since (1 + ‖l′‖2)d is a polynomial of degree 2d in l′, using integration by parts, we conclude that

there is a degree 2d polynomial DX in X1, · · · , Xn, depending only on d such that the left hand

side of (2.4) equals

(1 + ‖l‖2)d
∣∣∣∣∫

X
DX(φ1(x+ l)φ2(x))ψ(qV(x, l′))dx

∣∣∣∣ .
By the chain rule we conclude that this is a linear combination of the terms of the form

(1 + ‖l‖2)d
∣∣∣∣∫

X

∫
X∨
D1φ1(x+ l)D2φ2(x)ψ(qV(x, l′))dx

∣∣∣∣
where D1 and D2 are polynomials of in X1, · · · , Xn, and the degree of D1D2 is at most 2d. The

coefficients in this linear combination depends only on d. Each term is bounded by

(1 + ‖l‖2)d
∣∣∣∣∫

X
D1φ1(x+ l)D2φ2(x)dx

∣∣∣∣ .
Since

1 + ‖l‖2 ≤ 2(1 + ‖x+ l‖2)(1 + ‖x‖2),

and by Cauchy-Schwartz inequality, we conclude that the last integral is bounded by(∫
X
|D1φ1(x+ l)|2(1 + ‖x+ l‖2)2ddx

) 1
2
(∫

X
|D2φ2(x)|2(1 + ‖x‖2)2ddx

) 1
2

,
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which is bounded by a constant multiple (depending only on d) of

‖φ1‖4d‖φ2‖4d.

This proves the desired estimate. �

2.2. Representation of the Jacobi group. Let (V, qV ) be skew-hermitian space of dimension n,

and ResV be the symplectic space over R whose underline space is V viewed as a real vector space

and the symplectic form is Re qV . Then we have the Heisenberg group H(ResV ). Let Sp(ResV )

be the symplectic group attached to ResV and S̃p(ResV ) the double metaplectic cover. It is well-

known that the oscillating representation ρψ extends to a representation, which we still denote by

ρψ, of H(ResV ) o S̃p(ResV ). This is called the Weil representation.

There is a natural homomorphism U(V ) → Sp(ResV ). Put J(V ) = H(ResV ) o U(V ). Let

µ be a character of C× whose restriction to R× is the sign character. Then there is a splitting

map U(V )→ S̃p(ResV ) of the metaplectic cover (depending on µ). Thus we get a homomorphism

J(V )→ H(ResV ) o S̃p(ResV ). The Weil representation ρψ pulls back to the Weil representation

of J(V ), which we denote by ωψ,µ. For most part of this paper, the characters of ψ and µ will be

fixed, so we write only ω.

By a representation of J(V ), we mean a smooth representation of moderate growth with central

character ψ. By [Sun12], representation of J(V ) with central character ψ are all of the form

π ⊗̂ω

where π is a representation of U(V ).

Assume now that π is a unitary representation. By [Sun12, Theorem 1.1] we have

(π(0) ⊗̂h ω
(0))∞ = π ⊗̂h ω = π ⊗̂ω.

The last equality is because the space on which ω is realized is a space of Schwartz functions and

hence is nuclear. It follows that for any k > 0 if l is sufficiently large then

(2.5) (π(0) ⊗̂h ω
(0))(l) ⊂ π(k) ⊗̂h ω

(k).

We now describe the realization of ω on a mixed model following [GI16, Section 7.4]. It will

be used to deduce various estimates in the next subsection. Though [GI16] considers only the

nonarchimedean local fields, the formulae for the Weil representation presented there are valid for

all local fields of characteristic zero. Let V0 be subspace of V of codimension 2r such that V ⊥0 has

a basis {vi, v′i | i = 1, · · · , r} with,

qV (vi, vj) = qV (v′i, v
′
j) = 0, qV (vi, v

′
j) = δij , i, j = 1, · · · , r.

Fix any basis of V0. Then we identify V with Cn (row vectors), and write elements in U(V ) as

matrices. Let X and X ′ be the span of v1, · · · , vr and v′1, · · · , v′r respectively, and identify them
8



with Cr using these bases. Let P = MN be the parabolic subgroup of U(V ) stabilizing X. Let

a ∈ GLr(C), b ∈M(n−2r)×r(C), c ∈Mr×r(C) with tc = c, and put

m(a) =

a 1
ta−1

 , n(b) =

1 b 1
2bb
∗

1 b∗

1

 , z(c) =

1 c

1

1

 ,

where b∗ =
√
−1

t
b. We view b as a column vector whose rows are elements in V0.

The Weil representation is realized on the mixed model. Let us denote the Weil representation of

J(V0) by ω0 and fix a realization S0 of the Weil representation of J(V0). Elements of the Heisenberg

group H(V0) are denoted by h0(v, z), v ∈ V0, z ∈ R. The Weil representation of J(V ) is then realized

on S = S(Cr) ⊗̂ S0. We view elements in S as Schwartz functions on Cr (row vector) valued in

S0. We do not need the fully detailed description of the action as in [GI16, Section 7.4], but only

the following. Let a ∈ GLr(C), b ∈ M(n−2r)×r(C) and c ∈ Mr×r(C) with tc = c. We view b as an

element in V r
0 , or more precisely a column vector whose entries are elements in V0. Then

(2.6)

ω(m(a))φ(x) = µ(det a)|det a|
1
2
Cφ(xa),

ω(n(b))φ(x) = ω0(h0(xb, 0))(φ(x)),

ω(z(c))φ(x) = ψ(xc tx)φ(x).

Moreover it follows from (2.1) that if v = l + v0 + l′ ∈ V , l ∈ X, l′ ∈ X ′, v0 ∈ V0, then

(2.7) ω(h(v, 0))φ(x) = ω0(h0(v0, 0))(φ(x+ l))ψ(qV (x, l′) +
1

2
qV (l, l′)).

Consider the closed subspace of S

S0 = S(Cr\{0}) ⊗̂ S0.

It is P -invariant by the formulae (2.6). Let R ⊂ GLr(C) be the mirabolic subgroup, i.e. the

subgroup whose last row equals (0, · · · , 0, 1). Put Q = N o (R×U(V0)), which is a subgroup of P

and has a quotient isomorphic to J(V0).

Lemma 2.2. As a representation of P we have

S0 = indPQ µ|·|
1
2
C ⊗ S0.

Here

• µ|·|
1
2
C is a character of R;

• the Weil representation S0 of J(V0) is viewed as a representation of Q via the quotient map

Q→ J(V0).

Proof. Define the map

indPQ

(
µ|·|

1
2
C ⊗ S0

)
→ S(Cr\{0}) ⊗̂ S0, f 7→ φ,
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where

φ(x) = µ(det a)−1|det a|−
1
2

C f


a 1

ta−1


 ,

and a is an element in GLr(C) such that (0, · · · , 0, 1)a = x. It is straightforward to check, using

the description of the mixed model (2.6), that this map is independent of the choice of a and is

indeed an isomorphism. �

We now study the quotient S/S0. Since S0 is nuclear, by Borel’s lemma, the quotient S/S0 is

isomorphic to

C[[z1, · · · , zr, z1, · · · , zr]] ⊗̂ S0.

Any m(a), a ∈ GLr(C) acts on it by

(2.8) ω(m(a))φ(z1, · · · , zr, z1, · · · , zr) = µ(det a)|det a|
1
2
Cφ((z1, · · · , zr)a, (z1, · · · , zr)a).

The space of power series is filtered by the (lowest) degree. We denote

Wk = {φ ∈ C[[z1, · · · , zr, z1, · · · , zr]] | deg φ ≥ k}.

Lemma 2.3. Each Wk ⊗̂ S0 is stable under the action of N , and N acts trivially on the graded

pieces (Wk/Wk+1) ⊗̂ S0.

Proof. Let b and c be as in the description of the mixed model. We will prove that if φ ∈ Wk,

then ω(n(b))φ − φ and ω(z(c))φ − φ are both in Wk+1 ⊗̂ S0. For this we need to show that if

φ ∈ S(Cr) ⊗̂ S0 and the partial derivatives of φ vanish at x = 0 up to order k, then the derivatives

of ω(n(b))φ− φ and ω(z(c))φ− φ vanish up to order k + 1.

The action of z(c) is straightforward. Since

ω(z(c))φ(x)− φ(x) = (e−2π
√
−1xc tx − 1)φ(x).

The power series expansion of e−2π
√
−1xc tx − 1 is

−2π
√
−1xc tx+ higher order terms.

We now consider ω(n(b))φ. Let ResV0 = Y ⊕ Y ∨ be a decomposition where Y and Y ∨ are

maximal isotropic spaces of resV0, and we take S0 to be S(Y ). We may assume that φ is of the

form φ1 ⊗ φ2 where φ1 ∈ S(X) and φ2 ∈ S(Y ) such that the partial derivatives of φ1 vanish to the

order k at x = 0. By (2.6) we have

ω(n(b))φ(x) = φ1(x)ω0(h0(xb, 0))φ2(y).

If b ∈ Y r we have

ω0(h0(xb, 0))φ2(y) = φ2(y + xb) = φ2(y) + xb · Jφ2(y) + higher order terms in x.

Therefore

ω(n(b))φ(x)− φ(x) = φ1(x) (xb · Jφ2(y) + higher order terms in x) ,
10



which implies that the partial derivatives of ω(n(b))φ − φ vanish to the order at least k + 1. If

b ∈ Y ∨,r we have

ω0(h0(xb, 0))φ2(y) = φ2(y)ψ(qV0(y, xb))

= φ2(y)
(
1 + (−2π

√
−1qV0(y, xb)) + higher order terms in x

)
.

It follows that

ω(n(b))φ(x)− φ(x) = φ1(x)φ2(y)
(
(−2π

√
−1qV0(y, xb)) + higher order terms in x

)
,

which implies that the partial derivatives of ω(n(b))φ− φ vanish to the order at least k + 1. This

proves the lemma. �

Lemma 2.4. As a representation of M = GLr(C) × U(V0), the graded pieces Wk/Wk+1 ⊗̂ S0 are

isomorphic to (
µ|·|

1
2
C ⊗ Symk

(
Cr ⊕ Cr

))
⊗̂ S0,

where GLr(C) acts on Cr via the standard right multiplication, and U(V0) acts on S0.

Proof. This follows directly from (2.8) and Lemma 2.3. �

2.3. Some estimates. We derive some estimates which will be needed in the next section. We

follow the notation from the mixed model of ω. Let r be the Witt index of V and V0 is the

anisotropic kernel of V . Let P0 = M0N0 be the minimal parabolic subgroup stabilizing the flag

C{v1} ⊂ C{v1, v2} ⊂ · · · ⊂ C{v1, · · · , vr}.

We let A ' (R>0)r be the identity component of the maximal split torus in M . Let ∆P be the

roots of A in N and

A+ = {a ∈ A | |α(a)| ≤ 1,∀α ∈ ∆P } = {(a1, · · · , ar) | 0 < a1 ≤ · · · ≤ ar ≤ 1}.

We fix a maximal compact subgroup K of U(V ), and we have the Cartan decomposition

U(V ) = KA+K.

The measure dg on U(V ) decomposes as

dg = ϕ(a)dadk1dk2.

We will use the estimate that when a ∈ A+ we have

(2.9) ϕ(a) ≤ Cδ−1
P0

(a)

where C is a constant and δP0 is the modulus character of P0.

We choose any basis of V0 and then identify V with Cn. If v = (x1, · · · , xn) ∈ V = Cn then we

put

‖v‖ = (x1x1 + · · ·+ xnxn)
1
2 .

11



Let Ξ be the Harish-Chandra Xi function on U(V ). We also fix a logarithmic height function ς

on U(V ), cf. [BP20, Section 1.2]. We will use the standard estimate that when a ∈ A+ we have

(2.10) Ξ(a) ≤ Cδ
1
2
P0

(a)ς(a)d

for some constant C and d.

Matrix coefficients of tempered representations satisfy the weak inequality. Moreover precisely,

let Y1, · · ·YdimK be a basis of kR and ∆K = 1 − Y 2
1 − · · · − Y 2

dimK ∈ U(k). If π is a finite length

tempered representation of U(V ) and e, f ∈ π, then there are constants C and d, and an element

∆K in U(k) such that

|〈π(g)e, e′〉| ≤ CΞ(g)ς(g)d‖e‖∆dimK
K
‖e′‖∆dimK

K
.

By continuity the weak inequality holds for e, e′ ∈ π(k) for k ≥ 2 dimK+ 1. We denote by C(U(V ))

the Harish-Chandra Schwartz space of U(V ), i.e. the space of smooth functions f on U(V ) with

the property that for any d > 0 there is a constant C such that

|f(g)| ≤ CΞ(g)ς(g)−d.

The Weil representation is realized on the mixed model S as described in the previous subsection.

We fix an inner product on S0. Then an inner product on S is given by

〈φ, φ′〉 =

∫
Cr
〈φ(w), φ′(w)〉dw.

Lemma 2.5. Let φ, φ′ ∈ S. Let g ∈ U(V ) and v ∈ V . Then for any d > 0 there is a continuous

seminorm ν on S such that∣∣〈ω(h(v, 0))φ, ω(a)φ′〉
∣∣ ≤ (a1 · · · ar)(1 + ‖la+ l′ + v0‖2)−dν(φ)ν(φ′)

holds for all a ∈ A+ and v = l + v0 + l′ ∈ V , l ∈ X, l′ ∈ X ′, v0 ∈ V0.

Proof. Since a does not act on the coordinates in V0, by (2.2) we are reduced to the case V0 = 0.

Thus φ, φ′ are merely Schwartz functions on Cr.
We need to prove that for any d > 0 we can find a continuous seminorm ν such that

sup
l,l′

(1 + ‖la‖2)d(1 + ‖l′‖2)d
∣∣∣∣∫

Cr
φ1(x+ l)φ2(xa)ψ(qV (x, l′))dx

∣∣∣∣ ≤ ν(φ)ν(φ′).

First using integration by parts, we conclude that there is a differential operator ∇x on Cr (with

variable x) such that

(1 + ‖l′‖2)d
∫
Cr
φ1(x+ l)φ2(xa)ψ(qV (x, l′))dx =

∫
Cr
∇x(φ1(x+ l)φ2(xa))ψ(qV (x, l′))dx.

By the chain rule, we conclude that ∇x(φ1(x+ l)φ2(xa)) is linear combination of functions of the

form

φ3(x+ l)φ4(xa)
12



where φ3 and φ4 are again Schwartz functions and the coefficient involves polynomials of a1, · · · , ar.
Since 0 < ai ≤ 1 for all i, we conclude that in order to prove the lemma it is enough to prove that

there is a continuous seminorm ν such that

(1 + ‖la‖2)d
∫
Cr
|φ3(x+ l)φ4(xa)|dx ≤ ν(φ3)ν(φ4)

for all Schwartz functions φ3, φ4 on Cr. Indeed we have

1 + ‖la‖2 ≤ 2(1 + ‖(x+ l)a‖2)(1 + ‖xa‖2) ≤ 2(1 + ‖x+ l‖2)(1 + ‖xa‖2)

and thus

(1 + ‖la‖2)d
∫
Cr
|φ3(x+ l)φ4(xa)|dx ≤ 2d

∫
Cr

(1 + ‖x‖2)dφ3(x)dx · sup
x

(1 + ‖xa‖2)dφ4(xa).

We can find a seminorm ν on S such that∫
Cr

(1 + ‖x‖2)dφ3(x)dx · sup
x

(1 + ‖xa‖2)dφ4(xa) ≤ ν(φ3)ν(φ′4).

This is what we need. �

Let π and σ be finite length tempered representations of U(V ), and let

` ∈ HomU(V )(π ⊗̂σ ⊗̂ω,C)

be a nonzero linear form.

Lemma 2.6. For all e ∈ π, f ∈ σ, and φ ∈ S, there are constants C and d such that we have

|`(π(g)e, f, ω(h(v, 0))φ)| ≤ CΞ(g)ς(g)d(1 + ‖v‖)d

for all g ∈ U(V ) and v ∈ V .

Proof. Let Y1, · · · , Yn+1 be a basis of h(V )R, and put

∆ = 1− Y 2
1 − · · · − Y 2

n+1 ∈ U(h(V )).

Let k > n + 1 be an integer. By elliptic regularity, cf. [BP20, Section 2.1], we can find ϕ1 ∈
Ck−nc (H(V )) and ϕ2 ∈ C∞c (H(V )) such that

ω(ϕ1)ω(∆k) + ω(ϕ2) = 1ω

where 1ω stands for the identify automorphism of ω. Therefore

(2.11)
`(π(g)e, f, ω(h(v, 0))φ)

=`(π(g)e, f, ω(ϕ1)ω(∆k)ω(h(v, 0))φ) + `(π(g)e, f, ω(ϕ2)ω(h(v, 0))φ).

We estimate the first term `(π(g)e, f, ω(ϕ1)ω(∆k)ω(h(v, 0))φ), the other term

`(π(g)e, f, ωψ,µ(ϕ2)ω(h(v, 0))φ)

can be estimated similarly.
13



Note that

h(v, 0)−1∆kh(v, 0)−∆k

lies in the center of h(V ), and there is a polynomial of degree at most 2k on V (viewed as real

vector space) such that

ω(h(v, 0)−1∆kh(v, 0))φ = p(v)ω(∆k)φ.

We can find functions ϕ3, ϕ4 ∈ C∞c (U(V )), and an f0 ∈ σ such that

`(π(g)e, f, ω(ϕ1)ω(∆k)ω(h(v, 0))φ)

=p(v)`(π(ϕ3)π(g)e, σ(ϕ3)σ(ϕ4)f0, ω(ϕ3)ω(ϕ1)ω(h(v, 0))ω(∆k)φ).

We denote by ϕ3 ∗ϕ4 the usual convolution of ϕ3 and ϕ4, and ϕ3 ∗ϕ1 the function on J(V ) given

by

ϕ3 ∗ ϕ1(gh) = ϕ3(g)ϕ1(h), g ∈ U(V ), h ∈ H(V ).

Then

(ϕ3 ∗ ϕ4)⊗ (ϕ3 ∗ ϕ1)

gives a function in Ck−nc (U(V )× J(V )), and

(σ ⊗̂(π ⊗̂ω))∨((ϕ3 ∗ ϕ4)⊗ (ϕ3 ∗ ϕ1))` ∈ σ(k−n−k1) ⊗̂h(π ⊗̂ω)(k−n−k1),

where k1 is a fixed integer depending only on `. It follows that

`(π(ϕ3)π(g)e, σ(ϕ3 ∗ ϕ4)f0, ω(ϕ3)ω(ϕ1)ω(h(v, 0))ω(∆k)φ)

equals

〈(σ ⊗̂(π ⊗̂ω))∨((ϕ3 ∗ ϕ4)⊗ (ϕ3 ∗ ϕ1))`, f ⊗ (e⊗ φ)〉

We now fix a positive integer l such that the weak inequality holds for elements in π(l) and σ(l) ,

and the estimate in Lemma 2.1 holds for elements in S(l). By (2.5) we may then fix a large k, such

that

(π ⊗̂ω)(k−n−k1) ⊂ π(l) ⊗̂h ω
(l),

and hence

(πJ ⊗ σ)∨((ϕ3 ∗ ϕ1)⊗ (ϕ3 ∗ ϕ4))` ∈ π(l) ⊗̂h ω
(l) ⊗̂h σ

(l).

Therefore

〈(πJ ⊗ σ)∨((ϕ3 ∗ ϕ1)⊗ (ϕ3 ∗ ϕ4))`, f ⊗ e⊗ φ〉

is bounded by a constant multiple of Ξ(g)ς(g)d for some d. �

This lemma leads to the following proposition.

Proposition 2.7. Let the notation be as in the previous lemma. Take f1, f2 ∈ C(U(V )), and

φ1, φ2 ∈ ω. For all e ∈ π, f ∈ σ and φ ∈ S, the integral∫
U(V )×U(V )

∫
H(V )/Z

`(π(g1)e, σ(g2)f, ω(g2h)φ)f1(g1)f2(g2)〈ω(g2h)φ1, φ2〉dhdg1dg2

is absolutely convergent.
14



Proof. Let us make a change of variable g1 7→ g2g1. We need to prove that∫
U(V )

∫
V

∫
U(V )

`(π(g1)e, f, ω(h(v, 0))φ)f1(g2g1)f2(g2)〈ω(g2h)φ1, φ2〉dg2dhdg1

is absolutely convergent.

By Lemma 2.5 and Lemma 2.6, we need to show that for any d1 we can find a sufficiently large

d2 > 0 we have∫
U(V )

∫
U(V )

∫
V

Ξ(g1)(1 + ‖v‖2)d1Ξ(g2g1)Ξ(g2)|〈ω(g2h(v, 0))φ1, φ2〉|ς(g2)−d2ς(g1)−d2dvdg2dg1

is convergent.

We use the Cartan decomposition for g2, and integrate it first. The integral becomes∫
U(V )

∫
V

∫
A+

∫
K

∫
K
ϕ(a)Ξ(g1)(1 + ‖v‖2)d1Ξ(ak2g1)Ξ(a)

|〈ω(k1ak2h(v, 0))φ1, φ2〉|ς(a)−d2ς(g1)−d2dvdg2dg1

Make another change of variable v 7→ k−1
2 v to obtain∫

U(V )

∫
V

∫
A+

∫
K

∫
K
ϕ(a)Ξ(g1)(1 + ‖k−1

2 v‖2)d1Ξ(ak2g1)Ξ(a)

|〈ω(ah(v, 0)k2)φ1, ω(k−1
1 )φ2〉|ς(a)−d2ς(g1)−d2dk1dk2dadvdg1

Since K is compact and ‖v‖2 is a homogenenous polynomial, the ratio

supk∈K‖kv‖2

‖v‖2

is bounded above by a constant independent of v. Moreover by the uniform boundedness principle

for any seminorm ν on S
sup
k∈K

ν(ω(k)φ)

is again a seminorm on S. Thus using the estimate from Lemma 2.5, we only need to prove the

absolute convergence of

(2.12)

∫
U(V )

∫
V

∫
A+

∫
K
ϕ(a)Ξ(g1)(1 + ‖v‖2)d1Ξ(ak2g1)Ξ(a)

(a1 · · · ar)−1(1 + ‖la−1 + l′ + v0‖2)−dς(a)−d2ς(g1)−d2dk2dadvdg1

for sufficiently large d. Here we follow the notation of Lemma 2.5, a = (a1, · · · , ar) ∈ A+, v =

l + v0 + l′, l ∈ X, l′ ∈ X∨, v0 ∈ V0.

Now by the doubling principle, cf. [BP20, Proposition 1.5.1(vi)], integrating over k2 ∈ K gives∫
K

Ξ(ak2g1)dk = Ξ(a)Ξ(g1).

Thus the integral (2.12) is a product of∫
U(V )

Ξ(g1)2ς(g1)−d2dg1

15



and ∫
V

∫
A+

ϕ(a)(1 + ‖v‖2)d1Ξ(a)2(a1 · · · ar)−1(1 + ‖la−1 + l′ + v0‖)−dς(a)−d2dadv

It is well-known that the first integral is absolutely convergent when d2 is large, cf. [BP20, Proposi-

tion 1.5.1(v)]. For the second one, we make a change of variable and l 7→ la and observe that since

0 < a1 ≤ · · · ≤ ar ≤ 1 we have

‖la+ l′ + v0‖ ≤ ‖v‖.

Then the second integral is bounded above by∫
V

(1 + ‖v‖2)d1−ddv ×
∫
A+

ϕ(a)Ξ(a)2(a1 · · · ar)−1ς(a)−d2da

The first term is absolutely convergent if d is sufficiently large. To see the second term, we apply

the standard estimates (2.9) and (2.10) to reduce it to the absolute convergence of∫
0<a1≤···≤ar≤1

(a1 · · · ar)(− log a1 − · · · − log ar)
−d2da1 · · · dar

for sufficiently large d2, which is clear. �

3. The basic case: codimension zero and tempered

The goal of this section is to prove Theorem 1.1 under the assumptions that

• t = 0, so W = V ,

• π and σ are tempered, and in particular they are unitary.

We keep these assumptions throughout this section. We also slightly change notation for the

ease of exposition. We write π for a representation of U(V ) × U(V ), instead of π ⊗̂σ. The Weil

representation ω is realized on the mixed model S.

3.1. Tempered intertwining. Let G = U(V ) × U(V ) and GJ = U(V ) × J(V ). Let H = U(V ),

which embeds in G and GJ diagonally.

Let π be a finite length tempered representation of G. We put πJ = π ⊗̂ω, which is a finite

length tempered representation of GJ . Let End(πJ) be the algebra of (continuous) endomorphism

of πJ , which has an action of GJ × GJ by left and right multiplication. Let End(πJ)∞ be the

smooth vector in End(πJ), which is identified with πJ ⊗̂πJ .

We define

LπJ : End(πJ)∞ = πJ ⊗̂πJ → C, T 7→ LπJ (T ) =

∫
H

Trace(π(h)T )dh.

By [Xuea, Lemma 3.3] the integral is absolutely convergent and LπJ is a continuous linear form. It

then follows that LπJ defines a continuous linear map

LπJ : πJ 7→ (πJ)∨, LπJ (e) = (f 7→ LπJ (e⊗ f)) .
16



The image of LπJ lies in HomH(πJ ,C), which is finite dimensional. Therefore if T ∈ End(πJ)∞

then we have the compositions

LπJT : (πJ)∨ → (πJ)∨, TLπJ : πJ → πJ ,

which are both finite rank operators and their traces make sense. It follows immediately from the

definition that

TraceLπJT = TraceTLπJ = LπJ (T ).

The importance of LπJ is manifested in the following proposition, which we proved in [Xuea,

Proposition 3.6].

Proposition 3.1. Theorem 1.1 holds if the condition m(π) 6= 0 is replaced by LπJ 6= 0.

Thus to prove Theorem 1.1 in the case t = 0 in the tempered case, it is enough to prove the

following theorem.

Theorem 3.2. Assume π is irreducible, then m(π) 6= 0 if and only if LπJ 6= 0.

The proof of this theorem occupies the rest of this section.

3.2. Induction and tempered intertwining. Let P = MN be a parabolic subgroup of G, and

τ be a tempered representation of M . Let α ∈
√
−1A∗M , then we have the induced representation

Iα = IndGP τα.

Let K be a maximal compact subgroup of G. The representation Iα is realized on the space

{f : C∞(K, τ) | f(pk) = τ(p)f(k), p ∈ P ∩K}.

We denote this space by V, which is independent of α. With this realization,

L(Iα)J ∈ (V ⊗ V)∨, L(Iα)J ∈ Hom(V,V∨).

As (V ⊗ V)∨ and Hom(V,V∨) are topological vector spaces independent of α, it make sense to

speak of the smoothness of L(Iα)J and L(Iα)J , cf. [BP20, Appendix A.3]. The same argument as

in [BP20, Lemma 7.2.2(i)] gives the following lemma.

Lemma 3.3. The maps

α 7→ L(Iα)J , α 7→ L(Iα)J , α ∈
√
−1A∗M

are smooth.

The main result of this subsection is the following.

Proposition 3.4. If L(Iα)J 6= 0 for some α ∈
√
−1A∗M , then it is not zero for all α ∈

√
−1A∗M .
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Proof. In theory, one could proves this directly by relating it to the tempered intertwining for σ

(should we have defined it). But we take a shortcut and transport the results of [BP20, Proposi-

tion 7.4.1] to our current situation by using theta lifts.

We introduce more notation. The parabolic subgroup P of G also has a decomposition P =

P1×P2, where Pi = MiNi, i = 1, 2 is a parabolic subgroup of U(V ). We have Mi = U(Vi)×GLai(C),

i = 1, 2, where Vi ⊂ V is of codimension 2ai. There is an irreducible tempered representation

σi of U(Vi), an irreducible tempered representation τi of GLai(C). We also have
√
−1A∗M =

√
−1A∗M1

×
√
−1A∗M2

and α = (α1, α2) where αi ∈
√
−1A∗Mi

, i = 1, 2. Then

Ii,αi = Ind
U(V )
Pi

σi ⊗̂ τi,αi , i = 1, 2,

and Iα = I1,α1 ⊗̂ I2,α2 . As L(πα)J 6= 0, we may find subrepresentations

πi ⊂ Iαi , i = 1, 2,

such that L(π1 ⊗̂π2)J 6= 0.

The setup of theta lifts is explained in [Xuea, Section 3] in detail. We do not need all the details

and will only summarize what we need. For simplicity we will assume from now on that n is even.

The odd case requires only a slight modification of notation, e.g. taking dual at various places.

Let V ′ be a hermitian space of dimension n + 1 and W ′ a hermitian space of dimension n, such

that V ′ = W ′ ⊕⊥ L+ where L+ is a hermitian line of sign +1 (in the case of odd n, we need sign

−1). We consider the theta lifts from U(V ) to U(V ′) and from U(W ′) to U(V ), which we denote

by θV,V ′ and θW ′,V respectively. The theta lifts involve the choices of various characters, and we

fix them as in [Xueb, Subsection 3.4].

We may find a (unique) W ′ such that there is an irreducible representation σ′ of U(W ′) such

that θW ′,V (σ′) = π2. Let π′ = θV,V ′(π1). By the induction principle of theta lifts, cf. [Pau98,

Theorem 4.5.5], we have the following description of π′ and σ′. There is a parabolic subgroup P ′ =

M ′N ′ of U(V ′) with M ′ = U(V ′0)×GLa1(C), π′0 = θV1,V ′
0
(σ1), such that π′ is a subrepresentation of

I ′α1
= Ind

U(V ′)
P ′ π′0 ⊗̂ τ1,α1 .

There is a parabolic subgroup Q′ = L′U ′ of U(W ′) with L′ = U(W ′0)×GLa2(C) and an irreducible

tempered representation σ′0 of U(W ′0) such that θW ′
0,V0

(σ′0) = σ2, and σ′ is a subrepresentation of

I ′α2
= Ind

U(Q′)
Q′ σ′0 ⊗̂ τ2,α1 .

For any representation ρ′ of U(V ′)×U(W ′), a tempered intertwining linear form Lρ′ was intro-

duced in [BP20]. It defines an element in

HomU(W ′)(ρ
′,C)⊗HomU(W ′)(ρ′,C),

and if ρ′ is irreducible and this Hom space is not zero, then Lρ′ 6= 0, cf. [BP20, Theorem 7.2.1].
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Since L(π1 ⊗̂π2)J 6= 0, by [Xueb, Lemma 3.8], we have Lπ′ ⊗̂σ′ 6= 0. Note that this is where n

being even or odd makes a slight difference, as [Xueb, Lemma 3.8] involves the characters ψ(−1)n

and µ(−1)n . Therefore LI′α1 ⊗̂ I′α2 6= 0 for this α1 and α2. By [BP20, Proposition 7.4.1] we have

LI′α1 ⊗̂ I′α2 6= 0.

for all α1 and α2. Therefore if βi ∈
√
−1A∗Mi

, i = 1, 2, there are irreducible subrepresentation

π′β1 ⊂ I
′
β1 , σ′β2 ⊂ I

′
β2

such that Lπ′
β1
⊗̂σ′

β2

6= 0. Again by the induction principle there is an irreducible subrepresentation

π1,β1 ⊂ Iβ1 such that θV,V ′(πβ1) = π′β1 and π2,β2 = θW ′,V (σ′β2) is an irreducible subrepresentation of

Iβ2 . Using [Xueb, Lemma 3.8] again we conclude that L(π1,β1 ⊗̂π2,β2 )J 6= 0 and hence L(Iβ1 ⊗̂ Iβ2 )J 6= 0.

This proves the propositions. �

3.3. Proof of Theorem 3.2. We denote by Temp(G) the set of irreducible tempered representa-

tions of G. Put

Xtemp(G) =
⋃
P,σ

{
IndGP σα | α ∈

√
−1A∗M

}
where P = MN ranges over all parabolic subgroups of G and σ ranges over all irreducible square

integrable representation of M , up to the conjugation by G. Thus Xtemp has a structure of a

manifold with infinitely many connected components, and each

{IndGP σα | α ∈
√
−1A∗M}

is a connected component. There is a Plancherel measure on Xtemp(G), which we denote by dµ,

cf. [BP20, Section 2.6].

Let

O =
{

IndGP σα | α ∈
√
−1A∗M

}
be a connected component of Xtemp. We realize representations in O on a vector space V that is

independent of α, as in Subsection 3.2. Define

C∞c (O,V ⊗̂V)

to be the compactly supported smooth functions on O valued in V ⊗̂V. We view each Tα ∈
C∞c (O,V ⊗̂V) as a family of endomorphisms in End(IndGP σα)∞. By the matrical Paley–Wiener

Theorem as stated in [BP20, Theorem 2.6.1], for any Tα there is a unique f ∈ C(G) such that the

map

Xtemp(G) 3 π 7→ π(f)

is supported on O and equals Tα on O.

Lemma 3.5. Let π ∈ Temp(G) or Xtemp(G), and S, T ∈ End(πJ)∞. Then

(3.1) LπJ (S)LπJ (T ) = LπJ (SLπJT ).
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Proof. We will assume that HomH(πJ ,C) 6= 0 for otherwise Lπ = 0 and the lemma is void.

The fact that SLπJT ∈ End(πJ)∞ and the smoothness of π 7→ SLπJT is proved in the same

way as [BP20, Lemma 7.2.2(iii)]. Moreover both sides of (3.1) are continuous linear forms on both

variables S and T . Thus to prove (3.1) it is enough to assume that

S = (e1 ⊗ f1)φ1,φ2 , T = (e2 ⊗ f2)φ3,φ4 , e1, e2, f1, f2 ∈ π, φ1, φ2, φ3, φ4 ∈ S.

If e ∈ π and φ ∈ S then

SLπJT (e⊗ φ) = 〈φ4, φ〉〈e, f2〉LπJ (e2 ⊗ φ3 ⊗ f1 ⊗ φ2)e1 ⊗ φ1,

and hence as an element in πJ ⊗̂πJ , it equals

LπJ (e2 ⊗ φ3 ⊗ f1 ⊗ φ2) ((e1 ⊗ φ1)⊗ (f2 ⊗ φ4)) .

Therefore

LπJ (SLπJT ) = LπJ (e2 ⊗ φ3 ⊗ f1 ⊗ φ2)LπJ (e1 ⊗ φ1 ⊗ f2 ⊗ φ4).

We also have by definition that

LπJ (S)LπJ (T ) = LπJ (e1 ⊗ φ1 ⊗ f1 ⊗ φ2)LπJ (e2 ⊗ φ3 ⊗ f2 ⊗ φ4).

Assume π ∈ Temp(G). Then HomH(πJ ,C) is one dimensional and we fix a nonzero element ` in

it. Thus there is a constant a depending only on π such that

Lπ = a(`⊗ `).

We conclude that

LπJ (S)LπJ (T ) = LπJ (SLπJT )

as they both equal

a2`(e2 ⊗ φ3)`(f1 ⊗ φ2)`(e1 ⊗ φ1)`(f2 ⊗ φ4).

Now assume that π ∈ Xtemp(G). We can find a parabolic subgroup P = MN and an irreducible

square integrable representation σ of M such that

π = IndGP σ.

We put

Iα = IndGP σα, α ∈
√
−1A∗M .

Then Iα is irreducible for almost all α, and hence

L(Iα)J (S)L(Iα)J (T ) = L(Iα)J (SL(Iα)JT )

for almost all α. Then since both sides are continuous functions in α, we conclude that it holds for

all α and in particular α = 0, i.e. it holds for π. �
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If T ∈ End(π)∞ and φ1, φ2 ∈ S, then we define T φ1,φ2 ∈ End(πJ)∞ to be

T φ1,φ2(e⊗ φ) = 〈φ2, φ〉(T (e)⊗ φ1), e ∈ π, φ ∈ S.

We define

Lφ1,φ2π : π → π∨, e 7→ (f 7→ LπJ (e⊗ φ1 ⊗ f ⊗ φ2)) .

Lemma 3.6. Let S = Aφ1,φ2, T = Bφ3,φ4 where A,B ∈ End(π)∞ and φ1, φ2, φ3, φ4 ∈ S. Then

(3.2) SLπJT = (ALφ3,φ2π B)φ1,φ4 ,

Proof. Observe that in the variables A and B, both sides are continuous linear maps

End(π)∞ × End(π)∞ → End(πJ)∞.

Thus we only need to check this when A = e1 ⊗ f1 and B = e2 ⊗ f2, e1, e2, f1, f2 ∈ π. Then the

proof of Lemma 3.5 gives that the left hand side of (3.2) equals

LπJ (e2 ⊗ φ3 ⊗ f1 ⊗ φ2) ((e1 ⊗ φ1)⊗ (f2 ⊗ φ4)) .

The right hand side also equals this by definition. �

If f ∈ C(G) and φ1, φ2 ∈ S, then

gh 7→ f(g)〈φ1, ω(gh)φ2〉, g ∈ G, h ∈ H(V )

is a smooth function on GJ . We let C(GJ)◦ be the space of functions that are finite linear combi-

nations of this functions of this form. If f ∈ C(G) and φ1, φ2 ∈ S, then

πJ(fφ1,φ2) = π(f)φ1,φ2 .

Lemma 3.7. For all f ∈ C(GJ)◦, such that the map

Xtemp(G)→ End(πJ)∞, π → πJ(f)

is compactly supported, we have∫
H
f(h)dh =

∫
Xtemp(G)

LπJ (πJ(f))dµ(π),

Proof. We may assume that f = fφ1,φ21 where f1 ∈ C(G), φ1, φ2 ∈ S. Then

TraceπJ(fφ1,φ21 ) = 〈φ1, φ2〉Traceπ(f)

The right hand side equals∫
Xtemp(G)

∫
H
〈ω(h)φ1, φ2〉Trace(π(h)π(f))dhdµ(π).

Since the map π 7→ πJ(f) is compactly supported we conclude that the double integral is absolutely

convergent and hence we can change the order. It follows that the right hand side equals∫
H

∫
Xtemp(G)

〈ω(h)φ1, φ2〉Trace(π(h)π(f))dµ(π)dh.
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By the Plancherel formula for G, cf. [BP20, Theorem 2.6.1], the inner integral equals f(h). The

lemma then follows. �

We are now ready to prove the main result.

Proof of Theorem 3.2. We choose an ` ∈ HomH(πJ ,C) and v ∈ πJ such that `(v) 6= 0. We may

assume that v = e⊗ φ where e ∈ π and φ ∈ S and 〈φ, φ〉 = 1.

We can find a connected component O of Xtemp(G) such that π is a subrepresentation of a

representation in O. More precisely P = MN is a parabolic subgroup of G, and

O = {IndGP σα | α ∈
√
−1A∗M}

such that π ⊂ I0. To shorten notation, put Iα = IndGP σα. As before we realize Iα on a space V
independent of α.

Let f ∈ C(GJ)◦. By Proposition 2.7, the integral

(3.3)

∫
GJ
`(πJ(x)e)f(x)dx,

is absolutely convergent. Moveover it equals `(πJ(f)e), cf. the argument in [BP20, (7.5.4)]. Assume

the function f is of the form fφ1,φ21 , f1 ∈ C(G) and φ1, φ2 ∈ S, and the function

Xtemp(G) 3 π 7→ π(f1)

is compactly supported in O. By Lemma 3.7 we have

`(πJ(f)v) =

∫
H\GJ

`(πJ(x)v)

(∫
Xtemp(G)

L(Iα)J ((Iα)J(f)(Iα)J(x−1))dµ(α)

)
dx.

Since any Tα ∈ C∞c (O,V ⊗̂V) is of the form Iα(f1) for some f1 ∈ C(G), therefore we conclude that

for any Tα ∈ End((Iα)J)∞ of the form Aφ1,φ2α where Aα ∈ C∞c (O,V ⊗̂V) and φ1, φ2 ∈ S we have

(3.4) `(T0v) =

∫
H\GJ

`(πJ(x)v)

(∫
Xtemp(G)

L(Iα)J (Tα(Iα)J(x−1))dµ(α)

)
dx.

We first find a Tα = Aφ,φα such that A0e = e and A0|π′ = 0 for all π′ ⊂ I0 and π′ 6= π. Then

`(T0v) 6= 0. This implies that there is an α such that L(Iα)J 6= 0, and by Proposition 3.4 we

conclude that L(I0)J 6= 0.

We can therefore find an Sα = Bφ1,φ2
α with Bα ∈ C∞c (O,V ⊗ V) and φ1, φ2 ∈ S such that

L(I0)J (S0) 6= 0.

Consider a family of endomorphisms L(Iα)J (Sα)Tα, α ∈
√
−1A∗M . Since Tα = Aφ,φα we have

L(Iα)J (Sα)Tα = (L(Iα)J (Sα)Aα)φ,φ and L(Iα)J (Sα)Aα ∈ C∞c (O,V ⊗̂V). We now apply (3.4) to

L(Iα)J (Sα)Tα we obtain

(3.5) L(I0)J (S0)`(T0v) =

∫
H\GJ

`(πJ(x)v)

(∫
Xtemp(G)

L(Iα)J (Sα)L(Iα)J (Tα(Iα)J(x−1))dµ(α)

)
dx
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By Lemma 3.5 the right hand side of (3.5) equals∫
H\GJ

`(πJ(x)v)

(∫
Xtemp(G)

L(Iα)J ((SαL(Iα)JTα)(Iα)J(x−1))dµ(α)

)
dx

By Lemma 3.6 we have

SαL(Iα)JTα =
(
BαL

φ,φ2
Iα

Aα

)φ1,φ
and BαL

φ,φ2
Iα

Aα ∈ C∞c (O,V ⊗̂V). Apply once again (3.4) to SαL(Iα)JTα have

0 6= L(I0)J (S0)`(T0v) = `(S0L(I0)JT0(v)).

Since T0 = Aφ,φ0 and A0|π′ = 0 if π′ ⊂ I0 and π′ 6= π, we conclude that L(I0)J is not zero when

restricted to πJ , i.e. LπJ 6= 0 or equivalently LπJ 6= 0. �

4. Reduction to the basic case

We make extensive use of the Schwartz homology theory developed in [CS21, Xueb] in this

section. If G is a almost linear Nash group we denote the Schwartz homology of G by Hi(G,−),

i = 0, 1, 2, · · · .

4.1. Reduction to the tempered case. We still assume t = 0 in this section, so W = V . We

return to the notation from the Introduction, and denote by π and σ representations of U(V ). In

the Weil representation we fix µ = ξ1.

Let σ be a representation of U(V ) of the form

(4.1) Ind
U(V )
Qb

(
ξm1 |·|

t1
C ⊗ · · · ⊗ ξmb |·|

tb
C ⊗ σb

)
,

where

• Vb ⊂ V be a hermitian space so that its orthogonal complement is a split hermitian space

of dimension 2b,

• Qb is a parabolic subgroup of U(V ) so that its Levi component is isomorphic to (C×)b ×
U(Vb),

• m1, · · · ,mb ∈ Z and t1, · · · , tb are complex numbers with nonnegative real parts,

• σb is an irreducible limit of discrete series representation of U(Vb).

Assume that V has a decomposition

V = V0 ⊕⊥ 〈z1, z−1〉

such that qV (z1, z−1) = 1 and z1, z−1 are isotropic vectors. Let P = MN be the parabolic subgroup

stabilizing the line generated by z1. Then M = C××U(V0). Let π0 be an irreducible representation

of U(V0), χ = ξl|·|uC and

π = Ind
U(V )
P χ⊗ π0.
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Proposition 4.1. Assume that l+2u is not an integer with the same parity as n+1. Assume that

for any nonnegative integer j, either

l + 2u+ 2j + 2 6= −mi ± 2ti, i = 1, · · · , b

or

l − 2u− 2j 6= −mi ± 2ti, i = 1, · · · , b.

Then

m(π, σ) = m(σ, π0).

Proof. First by [CS21, Proposition 7.4], we have

π ⊗̂ω = Ind
U(V )
P

(
(χ⊗ π0) ⊗̂ω|P

)
,

and it follows that

HomU(V )(π ⊗̂σ ⊗̂ω,C) = HomU(V )

(
Ind

U(V )
P

(
(χ⊗ π0) ⊗̂ω|P

)
⊗̂σ,C

)
.

We make use of the mixed model

S = S(C) ⊗̂ S0,

as described in Subsection 2.2, where (ω0,S0) is the Weil representation of the Jacobi group S =

N o U(V0). Then S has a closed P -invariant subspace

S(C×) ⊗̂ S0

whose quotient is isomorphic (as vector spaces) to

C[[z, z]] ⊗̂ S0.

The space C[[z, z]] is filtered by the degree which gives a filtration on C[[z, z]] ⊗̂ S0. By Lemma 2.4,

the group N preserves this filtration and acts trivially on the graded pieces. Moreover C× acts on

C[[z, z]] by multiplication by

zizj 7→ µ(a)|a|
1
2
Ca

iajzizj = µ(a)|a|
i+j+1

2
C ξi−j(a)zizj .

In conclusion,

Ind
U(V )
P (χ⊗ π0) ⊗̂ω|P

has a subrepresentation

Ind
U(V )
P (χ⊗ π0) ⊗̂ S0

and the quotient has a filtration whose graded pieces (indexed by k) are direct sums of

ρjk = Ind
U(V )
P ξl+2j−k+1|·|

u+ k+1
2

C ⊗ π0, j = 0, 1, · · · , k.

By [Xueb, Lemma 4.2], our assumptions on l and u imply that

Hi(U(V ), ρjk ⊗̂σ) = 0
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for all i. Therefore by [Xueb, Corollary 2.14] we have

HomU(V )

(
Ind

U(V )
P

(
(χ⊗ π0) ⊗̂ S|P

)
⊗̂σ,C

)
= HomU(V )

(
Ind

U(V )
P

(
(χ⊗ π0) ⊗̂ S0

)
⊗̂σ,C

)
.

By Lemma 2.2, as a representation P we have S0 = indPS µ|·|
1
2
C ⊗S0. Thus the above Hom-space

is

HomU(V )

(
ind

U(V )
P

(
χδ

1
2
P ⊗ π0 ⊗̂ indPS

(
µ|·|

1
2
C ⊗ S0

))
⊗̂σ,C

)
,

which, by [CS21, Proposition 7.4] and the induction by stages [CS21, Proposition 7.2], equals

HomU(V )

(
ind

U(V )
S (π0 ⊗̂ S0) ⊗̂σ,C

)
.

Finally Frobenius reciprocity, cf. [CS21, Theorem 6.8], gives the proposition (note that S is uni-

modular). �

Proof of Theorem 1.1 assuming t = 0. Let π be an irreducible representation of U(V ) and assume

that π lies in a generic packet. Then π can be written as an irreducible parabolic induction

(4.2) ξl1 |·|
s1
C × · · · × ξla |·|

sa
C × π0,

where

• l1, · · · , la ∈ Z,

• s1, · · · , sa ∈ C with nonnegative real part,

• ξli |·|
si
C is not conjugate self-dual of sign (−1)n,

• Va ⊂ V is a hermitian subspace such that V ⊥a is a split hermitian space of dimension 2a,

• π0 is a limit of discrete series representation of U(Va).

By [Xueb, Lemma 4.4], li ± 2si, i = 1, · · · , a, and mj ± 2tj , j = 1, · · · , b, are not integers of the

same parity as n+ 1. By relabeling, we may assume that

Re
li + 2si

2
≥ Re

li+1 + 2si+1

2
, i = 1, · · · , a− 1

and

Re
−mi + 2ti

2
≥ Re

−mi+1 + 2ti+1

2
, i = 1, · · · , b− 1.

If a = b = 0, then we are in the tempered case so the theorem is proved.

Assume that

Re
l1 + 2s1 + 1

2
≥ Re

−m1 + 2t1
2

,

or b = 0. Then Re (l1 + 2s1 + 2j + 2) > Re (−mi ± 2ti) for all i = 1, · · · , b and all nonnegative

integer j (this is a vacuum statement if b = 0). This is because by our ordering, −m1 + 2t1 has the

maximal real part among −mi ± 2ti’s, i = 1, · · · , b. The conditions in Proposition 4.1 are verified.

Put

π−1 = ξl2 |·|s2 × · · · × ξla |·|sa × π0.

Then by Proposition 4.1, we have

m(π, σ) = m(σ, π−1 ).
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Choose s′1 ∈
√
−1R such that Im s′1 6= 0,±Im ti, i = 1, · · · , b, and

π1 = |·|s′1 × ξl2 |·|s2 × · · · × ξla |·|sa × π0.

still lies in the generic packet. The conditions in Proposition 4.1 are verified again and we conclude

m(π1, σ) = m(σ, π−1 ).

The net effect is that we replace a possibly nonunitary quasi-character ξl1 |·|s1 by a unitary

character |·|s′1 . We can of course repeat this process for ξli |·|
si
C , i = 1, 2, · · · , c, as long as

Re
li + 2si + 1

2
≥ Re

−m1 + 2t1
2

, i = 1, 2, · · · , c,

or b = 0. The net effect is that we replace ξli |·|
si
C by |·|s

′
i
C , i = 1, 2, · · · , c, where s′i ∈

√
−1R is a

generic purely imaginary number. Put

πi = |·|s
′
1
C × · · · |·|

s′i
C × ξli+1

|·|si+1

C × · · · × ξla |·|
sa
C × π0, i = 1, 2, · · · , c.

We have

m(π, σ) = m(π1, σ) = · · · = m(πc, σ),

Suppose now that we have

(4.3) Re
lc+1 + 2sc+1 + 1

2
< Re

−m1 + 2t1
2

,

or we are in the case either c = 0 or a = 0. The case c = 0 or a = 0 simply means that we have

Re
l1 + 2s1 + 1

2
< Re

−m1 + 2t1
2

or a = 0 to begin with, and thus did not implement the procedures as described above. We let

πc = π if this is the case.

The condition (4.3) is equivalent to

Re
m1 − 2t1 + 1

2
< Re

−lc+1 − 2uc1
2

,

which implies Re (m1−2t1−2j) < Re (−li−2ui) for all nonnegative integer j and all i = c+1, · · · , b,
since by our ordering, Re (−lc+1 − 2uc+1) is the smallest among all Re (−li − 2ui), i = c+ 1, · · · , b.
Moreover by our choice of the s′i, i = 1, · · · , c, we conclude that

m1 − 2t1 − 2j 6= ±2s′i,

for all nonnegative integer j and all i = 1, · · · , c. Thus we can apply Proposition 4.1 to σ and πc

and argue as in the previous step. Let us put

σ−1 = ωm2 |·|t2 × · · · × ωmb |·|
tb × σ0.

By Proposition 4.1 we have

m(πc, σ) = m(πc, σ
−
1 ).
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Let t′1 ∈
√
−1R be a generic purely imaginary number, and put

σ1 = |·|t′1 × ωm2 |·|t2 × · · · × ωmb |·|
tb × σ0.

Then by Proposition 4.1 again we have

m(πc, σ
−
1 ) = m(πc, σ1).

The net effect of this process is to replace a possibly nonunitary quasi-character ωm1 |·|t1 by a

unitary one |·|t′1 . We may repeat this process for ξm1 |·|
t1
C , · · · , ξmd |·|

td
C as long as

Re
lc+1 + 2sc+1

2
< Re

−mi + 2ti
2

, i = 1, · · · , d.

The net effect is that we replace ξmi |·|
ti
C by |·|t

′
i
C , i = 1, · · · , d, where t′i ∈

√
−1R is a generic purely

imaginary number. Put

σi = |·|t
′
1
C × · · · × |·|

t′i
C × ξmi+1 |·|

ti+1

C × · · · × ξmb |·|
tb
C × σ0.

We have

m(πc, σ) = m(πc, σ1) = · · · = m(πc, σd).

Suppose that we have

Re
lc+1 + 2sc+1

2
≥ Re

−md+1 + 2td+1

2
.

Then we can switch back to πc and make modifications of it in the same way as to π. We do the

modification to the characters ξc+1|·|sc+1

C , ξc+2|·|sc+2

C and so on in πc as π until we are not able to,

and then switch to σd and make modifications to it in the same way as σ. We keep repeating this

process and switching back and forth between π and σ. The process terminates after a + b steps

and the ultimate effect is that we find generic purely imaginary numbers

s′1, · · · , s′a, t′1, · · · , t′b ∈
√
−1R

so that we have

πa = |·|s′1 × · · · × |·|s′a × π0, σb = |·|t′1 × · · · × |·|t′b × σ0,

with

m(π, σ) = m(πa, σb).

Since πa and σb are both tempered, Theorem 1.1 holds for (πa, σb). By the description of the

generic packets, we have Aφπ = Aφπa , Aφσ = Aφσb and ηπ = ηπa , ησ = ησb . Theorem 1.1 thus holds

for (π, σ). �
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4.2. Reduction to the codimension zero case. Let us recall the following setup from the

Introduction. Let W ⊂ V be skew-hermitian spaces so that V = W ⊕⊥ Z where Z is a split

skew-hermitian space of dimention 2t. We fix a basis z±1, · · · , z±t of Z so that

qV (zi, z−j) = δij , i, j = ±1, · · · ,±t.

Let U be the unipotent radical of the parabolic subgroup of U(V ) stabilizing the flag of completely

isotropic subspaces

〈zt〉 ⊂ 〈zt, zt−1〉 ⊂ · · · ⊂ 〈zt, · · · , z1〉,

We define a character of U by

ψU (u) = ψ

(
−TrC/R

t−1∑
i=1

qV (z−i−1, uzi)

)
, u ∈ U.

If t = 0 or 1 we take ψU to be the trivial character. Let SV = U o U(W ) be a Fourier–Jacobi

subgroup of U(V ). Then the character ψU inflates to a character of SV .

The same construction also applies to W+ = W ⊕⊥ 〈z1, z−1〉 and we obtain the Jacobi subgroup

SW+ of U(W+). Let ω be the Weil representation of SW+ . There is a projection

SV → SW+

and ω inflates to a representation to SV which we also denote by ω. Since ψU is invariant under

the SW+ conjugation action, ν = ψU ⊗ ω is a representation of SV .

Let π and σ be irreducible representations of U(V ) and U(W ) respectively and assume that π

and σ lie in generic packets. Let s1, · · · , st be complex numbers. Let τ be the principal series

representation of GLt(C) induced from the characters |·|s1C , · · · , |·|
st
C . Let P = MN be the parabolic

subgroup of U(V ) stabilizing 〈z1, · · · , zt〉. Put

σ+ = Ind
U(V )
P τ ⊗̂σ.

Proposition 4.2. Assume that s1, · · · , st are in general position, i.e. they avoid the zero set of

countably many polynomials in t variables. Then

m(π, σ) = m(π, σ+).

Proof of Theorem 1.1 assuming Proposition 4.2. We have already proved Theorem 1.1 in the case

t = 0. Thus the theorem holds for (σ+, π). Theorem 1.1 then holds for (π, σ) as Aφσ+ =

Aφσ , ησ+ = ησ. This finishes the proof of Theorem 1.1. �

Proof of Proposition 4.2. The first step is similar to the proof of Proposition 4.1. The Weil rep-

resentation is realized on the mixed model S = S(Ct) ⊗̂ S0 where S0 is a realization of the Weil

representation ω of SW+ . There is a P -stable subspace S0 = S(Ct\{0}) ⊗̂ S0 whose quotient is

isomorphic (as vector spaces) to

C[[z1, · · · , zt, z1, · · · , zt]] ⊗̂ S0.
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The quotient has a filtration by the degree of the power series. The group N acts trivially on the

graded pieces, and the graded piece as representations of GLr(C) are

ρk =

(
µ|·|

1
2
C Symk(Cr ⊕ Cr)

)
⊗̂ S0, k = 0, 1, · · · ,

where Cr is the standard representation of GLr(C), and GLr(C) acts trivially on S0.

We have

HomU(V )(π ⊗̂σ+ ⊗̂ S,C) = HomU(V )

(
π ⊗̂

(
Ind

U(V )
P τ ⊗̂σ ⊗̂ S|P

)
,C
)
.

We claim that if s1, · · · , st are in general position, then

HomU(V )

(
π ⊗̂σ+ ⊗̂ S,C

)
= HomU(V )

(
π ⊗̂

(
Ind

U(V )
P τ ⊗̂σ ⊗̂ S0

)
,C
)
.

Indeed this follows from

(4.4) Hi

(
U(V ), π ⊗̂ Ind

U(V )
P (τ ⊗̂ ρk) ⊗̂(σ ⊗̂ S0)

)
= 0

for all i and all k. To see this we use the technique developed in [Xueb, Subsection 3.2]. We

have constructed elements in Z(u(V )) which annihilates Ind
U(V )
P (τ ⊗̂ ρk) ⊗̂(σ ⊗̂ S0). Let z be one of

them given in [Xueb, Lemma 3.5]. Since π is irreducible, the element z acts on π∨ by a constant λπ

which is a nonzero polynomial function in s1, · · · , st+1. Thus if (s1, · · · , st+1) avoids the zeros of this

polynomial, we have λπ 6= 0 and thus obtain the desired vanishing for Hi from [Xueb, Corollary 2.8]

for this k. Since there are only countably many k’s, we conclude that if s1, · · · , st+1 are in general

position, then Hi = 0 for all k.

The second step is to understand S0. This is close to the analysis in [Xueb, Section 6]. Let R

be the mirabolic subgroup of GLr(C) and put Q = N o (R×U(W )), which has a natural quotient

isomorphic to SW+ . Then by Lemma 2.2 we have

S0 = indPQ µ|·|
t
2
C ⊗̂ S0,

where the action of Q on S0 is via the Weil representation through its quotient S+
W . Using induction

by stages, we conclude that

HomU(V )

(
π ⊗̂

(
Ind

U(V )
P τ ⊗̂σ ⊗̂ S0

)
,C
)

= HomU(V )

(
π ⊗̂

(
ind

U(V )
Q τ |Rµ|·|

t
2
Cδ
− 1

2
P ⊗̂σ ⊗̂ S0

)
,C
)
.

The restriction of τ to the mirabolic subgroup R has been carefully analyzed in [Xueb, Section 5].

It has a subrepresentation τ0 isomorphic to

indRUt ψt

where Ut is the usual upper triangular unipotent subgroup of GLt(C) and ψt is the generic character

of Ut given by

ψt(u) = ψ(u12 + · · ·+ ut−1,t), u ∈ Ut.

The quotient (τ |R)/τ0 admits a countable filtration whose graded pieces are isomorphic to various

induced representations. The point is the same as before. For each graded piece, one can find
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an element in the center of the universal enveloping algebra which annihilates this piece, and this

element acts on π∨ by a scalar, which is a polynomial function in s1, · · · , st. Then the same

argument as the proof of (4.4) gives that

Hi

(
U(V ), π ⊗̂

(
ind

U(V )
Q ρχV |·|

t
2
Cδ
− 1

2
P ⊗̂σ ⊗̂ S0

))
= 0

for all i and all graded pieces ρ of (τ |R)/τ0 when s1, · · · , st avoid the zeros of this polynomial

function. Since there are only countably many graded piece, we conclude that as before that if

s1, · · · , st are in general position, then

HomU(V )

(
π ⊗̂

(
ind

U(V )
Q τ |RχV |·|

t
2
Cδ
− 1

2
P ⊗̂σ ⊗̂ S0

)
,C
)

= HomU(V )

(
π ⊗̂

(
ind

U(V )
Q

(
indRUt ψt

)
⊗̂σ ⊗̂ S0

)
,C
)
.

Observe that

SV = Ut o (N o U(W ))

and ψt ⊗ S0 is precisely the representation ν appearing in the Fourier–Jacobi model. Induction by

stages again gives that

HomU(V )

(
π ⊗̂

(
ind

U(V )
Q

(
indRUt ψt

)
⊗̂σ ⊗̂ S0

)
,C
)

= HomU(V )

(
π ⊗̂

(
ind

U(V )
SV

σ ⊗̂ ν
)
,C
)
.

Another application of the Frobenius reciprocity gives that this equals (SV is unimodular)

HomSV

(
π ⊗̂σ ⊗̂ ν,C

)
.

This is what we are after. �
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