The University of Arizona
Please note that this event has ended!

Spatio-Temporal Additive Regression Model Selection for Urban Water Demand

Modeling, Computation, Nonlinearity, Randomness and Waves Seminar

Spatio-Temporal Additive Regression Model Selection for Urban Water Demand
Series: Modeling, Computation, Nonlinearity, Randomness and Waves Seminar
Location: Zoom Meeting
Presenter: Xeuying Tang, Department of Mathematics, University of Arizona

 

Understanding the factors influencing urban water use is critical for meeting demand and conserving resources. To analyze the relationships between urban household-level water demand and potential drivers, we develop a method for Bayesian variable selection in partially linear additive regression models, particularly suited for high-dimensional spatio-temporally dependent data. Our approach combines a spike-and-slab prior distribution with a modified version of the Bayesian group lasso to simultaneously perform selection of null, linear, and nonlinear models and to penalize regression splines to prevent overfitting. We investigate the effectiveness of the proposed method through a simulation study and provide comparisons with existing methods. We illustrate the methodology on a case study to estimate and quantify uncertainty of the associations between several environmental and demographic predictors and spatio-temporally varying household-level urban water demand in Tampa, FL.  Zoom: https://arizona.zoom.us/j/95834019930