The University of Arizona

Finite-Element Simulation of Optical Phenomena on 2D Materials

Finite-Element Simulation of Optical Phenomena on 2D Materials

Series: Modeling and Computation Seminar
Location: Math 402
Presenter: Matthias Maier, Mathematics, Texas A&M University

In the terahertz frequency range, the effective (complex-valued) surface conductivity of atomically thick 2D materials such as graphene has a positive imaginary part that is considerably larger than the real part.  This feature allows for the propagation of slowly decaying electromagnetic waves, called surface plasmon-polaritons (SPPs), that are confined near the material interface with wavelengths much shorter than the wavelength of the free-space radiation. SPPs are promising ingredients in the design of novel optical applications promising "subwavelength optics" beyond the diffraction limit. There is a compelling need for controllable numerical schemes which, placed on firm mathematical grounds, can reliably describe SPPs in a variety of geometries.  In this talk we present an adaptive, higher-order finite element approach for the simulation of SPPs on 2D materials and layered structures. Aspects of the numerical treatment such as absorbing perfectly matched layers, local refinement and a-posteriori error control are discussed. We will present a number of applications of the framework to optical device simulations. Corresponding analytical results elucidate the solution structure. We conclude by introducing a homogenization theory of layered heterostructures to design novel devices.

Department of Mathematics, The University of Arizona 617 N. Santa Rita Ave. P.O. Box 210089 Tucson, AZ 85721-0089 USA Voice: (520) 621-6892 Fax: (520) 621-8322 Contact Us © Copyright 2018 Arizona Board of Regents All rights reserved