ALGEBRA QUALIFYING EXAMINATION

AUGUST 2014

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers. Say what you mean, mean what you say. Rings are taken to be rings with unity.

1 A. Let A be an n-by- n matrix in \mathbb{C} for some $n \geq 2$ that is in Jordan canonical form (which by convention is upper-triangular) with minimal polynomial equal to $(x-\lambda)^{n}$ for some $\lambda \in \mathbb{C}$. Let B be the matrix attained from A by replacing its $(n, 1)$-entry by 1 . Find the Jordan canonical form of B.

1B. Let k be an algebraically closed field and let M be an $n \times n$ matrix with entries in k. Prove that M can be written as a sum $M=M_{s}+M_{n}$ of matrices with k-entries such that

- M_{s} is semisimple (i.e., its minimal polynomial has distinct roots)
- M_{n} is nilpotent, and
- M_{s} and M_{n} commute.

2 A. Let $G=\mathrm{GL}_{n}(\mathbb{C})$ be the group of n-by- n invertible matrices with complex entries, and let $T<G$ be the subgroup of diagonal matrices. Prove that $N_{G}(T) / T \cong S_{n}$, where $N_{G}(T)$ denotes the normalizer of T in G.

2B. Show that there is a unique isomorphism class of nonabelian groups of order 105 , consisting of groups of the form $C \times H$, where C has order 5 and H is nonabelian of order 21.

3A. Let R be the polynomial ring $\mathbb{C}[x, y, z]$.
(a) Show that every maximal ideal of R has the form $(x-a, y-b, z-c)$ for some $a, b, c \in \mathbb{C}$. You may use the following fact without proof: the only field extension of \mathbb{C} that is finitely generated as a \mathbb{C}-algebra is \mathbb{C}.
(b) Let I be the ideal $\left(x^{2}-y^{2}-z^{2}, x y+1, z^{3}\right)$ of R. Find the maximal ideals of the quotient ring R / I, writing each as the image of a maximal ideal of R containing I.

3B. Let R be a commutative ring, and let I be a proper ideal of R.
(a) Show that if S is a multiplicatively closed subset of R with $S \cap I=\varnothing$, then there exists a prime ideal containing I disjoint from S.
(b) The radical of I is defined to be the set

$$
\sqrt{I}=\left\{x \in R: x^{n} \in I \text { for some } n>0\right\} .
$$

Prove that \sqrt{I} is the intersection of the prime ideals of R that contain I.

4 A . Let ζ_{72} be a primitive 72 nd root of unity. Find, with proof, all square-free (i.e., not divisible by the square of any prime number) integers $d \neq 1$ such that $\mathbb{Q}(\sqrt{d})$ is contained in $\mathbb{Q}\left(\zeta_{72}\right)$.

4B. Let $f(x)=x^{4}+a x^{3}+b x^{2}+a x+1 \in \mathbb{Q}[x]$, or in other words, let f be a monic polynomial of degree 4 with $f(x)=x^{4} f\left(x^{-1}\right)$. Suppose that f is irreducible. Show that the Galois group of the splitting field of f over \mathbb{Q}
is isomorphic to the cyclic group of order 4, the Klein-four group, or the dihedral group of order 8 .

5A. Give an example of a commutative ring R and a finitely generated R-module M with the following properties.

- M is torsion-free, i.e., if $r m=0$ with $r \in R$ and $m \in M$ then either $r=0$ or $m=0$, and
- M is not a free R-module.

5B. Let F be a field, and let K be a finite Galois extension of F. Let $\alpha \in K$, and set $n=[F(\alpha): F]$. Show that $K \otimes_{F} F(\alpha)$ and K^{n} are isomorphic rings.

