ALGEBRA QUALIFYING EXAMINATION

AUGUST 2014

Do either one of nA or nB for $1 \le n \le 5$. Justify all your answers. Say what you mean, mean what you say. Rings are taken to be rings with unity.

- 1A. Let A be an n-by-n matrix in \mathbb{C} for some $n \geq 2$ that is in Jordan canonical form (which by convention is upper-triangular) with minimal polynomial equal to $(x \lambda)^n$ for some $\lambda \in \mathbb{C}$. Let B be the matrix attained from A by replacing its (n, 1)-entry by 1. Find the Jordan canonical form of B.
- 1B. Let k be an algebraically closed field and let M be an $n \times n$ matrix with entries in k. Prove that M can be written as a sum $M = M_s + M_n$ of matrices with k-entries such that
 - M_s is semisimple (i.e., its minimal polynomial has distinct roots)
 - M_n is nilpotent, and
 - M_s and M_n commute.
- 2A. Let $G = \operatorname{GL}_n(\mathbb{C})$ be the group of *n*-by-*n* invertible matrices with complex entries, and let T < G be the subgroup of diagonal matrices. Prove that $N_G(T)/T \cong S_n$, where $N_G(T)$ denotes the normalizer of T in G.
- 2B. Show that there is a unique isomorphism class of nonabelian groups of order 105, consisting of groups of the form $C \times H$, where C has order 5 and H is nonabelian of order 21.
- 3A. Let R be the polynomial ring $\mathbb{C}[x, y, z]$.
 - (a) Show that every maximal ideal of R has the form (x a, y b, z c) for some $a, b, c \in \mathbb{C}$. You may use the following fact without proof: the only field extension of \mathbb{C} that is finitely generated as a \mathbb{C} -algebra is \mathbb{C} .
 - (b) Let I be the ideal $(x^2 y^2 z^2, xy + 1, z^3)$ of R. Find the maximal ideals of the quotient ring R/I, writing each as the image of a maximal ideal of R containing I.
- 3B. Let R be a commutative ring, and let I be a proper ideal of R.
 - (a) Show that if S is a multiplicatively closed subset of R with $S \cap I = \emptyset$, then there exists a prime ideal containing I disjoint from S.
 - (b) The *radical* of I is defined to be the set

$$\sqrt{I} = \{ x \in R : x^n \in I \text{ for some } n > 0 \}.$$

Prove that \sqrt{I} is the intersection of the prime ideals of R that contain I.

- 4A. Let ζ_{72} be a primitive 72nd root of unity. Find, with proof, all square-free (i.e., not divisible by the square of any prime number) integers $d \neq 1$ such that $\mathbb{Q}(\sqrt{d})$ is contained in $\mathbb{Q}(\zeta_{72})$.
- 4B. Let $f(x) = x^4 + ax^3 + bx^2 + ax + 1 \in \mathbb{Q}[x]$, or in other words, let f be a monic polynomial of degree 4 with $f(x) = x^4 f(x^{-1})$. Suppose that f is irreducible. Show that the Galois group of the splitting field of f over \mathbb{Q}

is isomorphic to the cyclic group of order 4, the Klein-four group, or the dihedral group of order 8.

- 5A. Give an example of a commutative ring R and a finitely generated R-module M with the following properties.
 - M is torsion-free, i.e., if rm = 0 with $r \in R$ and $m \in M$ then either r = 0 or m = 0, and
 - M is not a free R-module.
- 5B. Let F be a field, and let K be a finite Galois extension of F. Let $\alpha \in K$, and set $n = [F(\alpha) : F]$. Show that $K \otimes_F F(\alpha)$ and K^n are isomorphic rings.