## ALGEBRA QUALIFYING EXAMINATION

AUGUST 2015

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers. Say what you mean, mean what you say. Any ring denoted $R$ is a commutative ring with identity.

1A. Let $p$ a prime and let $F$ be a finite field of characteristic $p$. Determine the conjugacy classes of elements of order $p$ for the group $\mathrm{GL}_{2}(F)$ and for the group $\mathrm{SL}_{2}(F)$.

1B. Prove that $\operatorname{det}(I+X Y)=\operatorname{det}(I+Y X)$ for any two $n \times n$ matrices $X, Y$ with real entries.

2A. Classify (up to isomorphism) the groups of order 2015. (Note that $2015=$ $5 \times 13 \times 31$.)

2B. Show that the group $\mathrm{SL}_{2}\left(F_{4}\right)$ is isomorphic to $A_{5}$ by giving an explicit isomorphism.

3A. Let $R$ be an infinite integral domain with finitely many units. Show that $R$ has infinitely many distinct maximal ideals.

3B. Suppose that the commutative ring $R$ is neither the zero ring nor a field. Prove that the polynomial ring $R[x]$ is not a PID.

4A. Let $f(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Q}[x]$ be a palindromic polynomial; that is, the coefficients of $f$ satisfy $a_{n}=a_{0}, a_{n-1}=a_{1}$, and more generally $a_{n-i}=a_{i}$ for all $0 \leq i \leq n$. Prove that if $n>2$ then the Galois group of $f$ (i.e., the $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$ where $K$ is a splitting field of $f)$ is not $S_{n}$.

4B. Compute the splitting field of $\left(x^{3}-2\right)\left(x^{2}+x+1\right)$ over $\mathbb{Q}$ and determine all subfields.

5A. Let $A$ be an abelian group with generators $a, b, c, d$ and relations $a+b-c+$ $d=0, a-b+c+d=0$, and $-a+b+c+d=0$. List all homomorphisms from $B=\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ to $A$.

5B. Suppose that $A$ and $B$ are $m \times m$ and $n \times n$ matrices with complex entries, respectively. Show that the linear transformation $A \otimes I_{n}-I_{m} \otimes B$ on $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ is invertible if and only if $A$ and $B$ have no eigenvalues in common. (Here $I_{m}$ and $I_{n}$ denote the $m \times m$ and $n \times n$ identity matrices, respectively.)

