Algebra Qualifying Examination

August 2016
Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.

1A. Let V be a finite dimensional complex vector space. Let A and B be two linear endomorphisms of V satisfying $A B-B A=B$. Let λ be an eigenvector of B and $v \in V$ an eigenvector for λ.
a) Prove that the subspace W spanned by $v, A v, A^{2} v, \cdots$ is B-invariant. (Hint: Show that $B A^{k} v=\lambda\left(A^{k} v+\sum_{i=0}^{k-1} a_{i} A^{i} v\right)$ holds for some $a_{i} \in \mathbb{C}$ for any $k \geq 0$.)
b) Prove that W is a subspace of the null space of B in V. (Hint: Let $n=\operatorname{dim} W$. Then $v, A v, \cdots, A^{n-1} v$ form a basis of W. Show that $\lambda=0$.) Consequently, there is a common eigenvector in W for A and B.

1B. Let A be a complex m by m matrix and let B be a complex n by n matrix. Show that the determinant of the Kronecker product of A and B is $\operatorname{det}(A)^{n} \operatorname{det}(B)^{m}$.

2A. Prove that a group of order 150 is not simple. (Hint: use the set Σ of all Sylow 5-subgroups in G and consider the permutation representation of G on Σ which sends P to $g P g^{-1}$.)

2B. Suppose p is a prime and G is a finite group. A subgroup K of G is called a normal p-complement if $K \triangleleft G$ and there is a Sylow p-subgroup P such that $K \cap P=1$ and $K P=G$. Show that if G has a normal p-complement then it is unique. Show that if G is a nilpotent group then p-complements exist.

3A. Check if the ring $\mathbb{Z}[\sqrt{-6}]=\{a+b \sqrt{-6} \mid a, b \in \mathbb{Z}\}$ is a UFD.
3B. Let R be a PID and I a nonzero ideal of R. Show that there are only finitely many ideals of R containing I. Show by example that this may not hold if R is a UFD but not a PID.

4A. Let F be a field and \bar{F} an algebraic closure of F. Let $f(x, y)$ and $g(x, y)$ be polynomials in $F[x, y]$ such that g.c.d $(f, g)=1$ in $F[x, y]$. Show that there are only finitely many $(a, b) \in \bar{F}^{2}$ such that $f(a, b)=g(a, b)=0$. (Hint: Use the Euclidean algorithm.)

4B. Let ϵ be a complex, primitive 20 -th root of unity. Determine all subfields of $\mathbb{Q}(\epsilon)$ and for each subfield determine a primitive element.

5A. Let D be a PID, and D^{n} the free module of rank n over D. Prove that any submodule of D^{n} is a free module of rank $m \leq n$. (Hint: you may use that D is Noetherian and any matrix $A=\left(a_{i j}\right)$ with $a_{i j} \in D$ can be diagonalized in the sense of Smith Normal Form.)

5B. Let G be the group with presentation

$$
\left\langle x, y, z, t \mid(x z)^{2}(y t)^{2},(x t)^{4}(z y)^{3},(x y)^{4}(z t)^{2}\right\rangle .
$$

Write the commutator factor group of G as a direct product of cyclic groups.

