ALGEBRA QUALIFYING EXAMINATION

AUGUST 2017

Do either one of nA or nB for $1 \le n \le 5$. Justify all your answers.

1A. Let $N \in \operatorname{Mat}_n(\mathbb{C})$ be an $n \times n$ matrix. Assume that N is nilpotent; that is, there exists an integer r > 0 such that $N^r = 0$.

(a) Prove that if N is diagonalizable, then N = 0.

(b) Prove that $I_n + N$, where I_n denotes the $n \times n$ identity matrix, is invertible.

1B. Let $A : \mathbb{R}^3 \to \mathbb{R}^2$ and $B : \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformations of real vector spaces.

(a) Prove that BA is never invertible.

(b) Give an example showing that AB can be invertible.

(c) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a symmetric linear transformation of real vector spaces. Suppose that trace $(T^2)=0$. Prove that T=0.

2A. Let $G = \operatorname{GL}_3(\mathbb{F}_7)$ be the group of invertible 3×3 matrices over the finite field \mathbb{F}_7 with 7-elements. Find, with proof, a 7-Sylow subgroup of G.

2B.

(a) If $|G| = p^n q$ with p > q primes, prove that G contains a unique normal subgroup of index q.

(b) Suppose G is a finite p-group and $H \neq \{1\}$ is a normal subgroup of G. Show that $H \cap Z(G) \neq 1$, where Z(G) is the center of G.

3A. Let A be a commutative ring with unit.

(a) Let $a \in A$. Show that

$$\operatorname{Ann}(a) = \{ b \in A : ba = 0 \}$$

is an ideal.

(b) Assume that A is in addition noetherian and $1 \neq 0$. Prove that there exists $a \in A$ such that the ideal Ann(a) is prime in A.

3B.

(a) Prove that a non-zero prime ideal in a PID is maximal.

(b) Find, with proof, a maximal ideal I in $\mathbb{Z}[\sqrt{-1}] = \{m + n\sqrt{-1} | m, n \in \mathbb{Z}\}$ which contains 5, given the fact that $\mathbb{Z}[\sqrt{-1}]$ is a PID (in fact, it is also Euclidean).

4A. Let K be a splitting field for the polynomial $X^5 - 7$ over \mathbb{Q} . Find, with proof, $[K:\mathbb{Q}]$ and an explicit Galois field extension $\mathbb{Q} \subsetneq L \subsetneq K$ with [L:K] = 2.

4B. Let K be the splitting field of $x^3 - 11 \in \mathbb{Q}[x]$ over \mathbb{Q} . Find, with proof, the degree $[K : \mathbb{Q}]$ and the Galois group $\operatorname{Gal}(K/\mathbb{Q})$. Determine explicitly all the intermediate fields between \mathbb{Q} and K.

5A. Let A be a noetherian commutative ring with unit. Let M be a finitely generated A-module. Let $\phi: M \to M$ be an A-module homomorphism. Prove that if ϕ is surjective, then it is an isomorphism (this is even true when A is non-noetherian).

5B. Suppose R is a commutative ring and M is an R-module. An R-submodule N of M is called pure if $rN = N \cap rM$ for all $r \in R$.

(a) Show that any direct summand of M is pure.

(b) Assume that R is an integral domain. If M/N is torsion-free show that N is pure. Prove the converse when M is in addition assumed to be torsion-free.