ALGEBRA QUALIFYING EXAMINATION

AUGUST 2019

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.

1A. Let A and B be the following rational matrices: $A=\left(\begin{array}{rrr}0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a\end{array}\right)$ and $B=\left(\begin{array}{rrr}1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1\end{array}\right)$ with $a, b \in \mathbb{Q}$.
(1) Suppose A and B are similar. Determine a and b.
(2) For that values of a and b obtained in (1), find a rational, invertible matrix P so that $P^{-1} A P$ is in Jordan canonical form.

1B. Let V be a Euclidean space over \mathbb{R}. Let $T: V \rightarrow V$ be a linear transform and T^{*} be its adjoint. Assume that $T T^{*}=T^{*} T$. Show that if $\alpha, \beta \in V$ with $T(\alpha)+\alpha=T(\beta)=0$, then $\alpha \perp \beta$.

2A. Let G be a group generated by two elements $a, b \in G$ with $a^{2}=b^{2}=1$. Show that the commutator subgroup of G is cyclic.

2B. Prove that a group of order 99 is abelian.

3A.
a) Let I be a finite integral domain. Show that I is a field.
b) Let R be a commutative ring with identity and let I be a prime ideal of R of finite index. Show that P is a maximal ideal.

3B. Let A be a commutative ring with identity. Let I_{1}, \ldots, I_{s} be ideals of A such that $I_{1} \cap \cdots \cap I_{s}=(0)$. If A / I_{i} is Noetherian for all $i=1, \ldots, s$, show that A is Noetherian.

4 A . Determine the Galois group for the polynomial $x^{9}-1$ over \mathbb{Q} and over the field \mathbb{F}_{7} with 7 elements and determine all subfields of a splitting field in both cases.

4B. Let $a \in \mathbb{Q}$. Assume that $f(x)=x^{3}-a$ is irreducible over \mathbb{Q}. Determine the Galois group of $f(x)$.

5A. (1) Let R be a PID and M be a finitely generated module over R. Show that M is free if and only if M is torsion free.
(2) Let R be an integral domain. Show that an ideal I of R is a free R module if and only if it is principal. Use this to give a torsion free module over $\mathbb{C}[X, Y]$ that is not free.

5B. Let A be an abelian group generated by three elements $a, b, c \in A$ with $12 a-3 b+$ $6 c=-6 a+3 b-6 c=0$. Write the following abelian groups as a direct sum of cyclic groups: $A, A \otimes_{\mathbb{Z}} A$ and the group $\operatorname{Hom}(A, A)$ of group homomorphisms from A to A.

