ALGEBRA QUALIFYING EXAMINATION

AUGUST 2020

Do either one of nA or nB for $1 \le n \le 5$. Justify all your answers.

1A. Let V be a vector space over \mathbb{R} and $h_V: V \times V \to \mathbb{R}$ be a positive semidefinite bilinear form, i.e. h_V is a symmetric bilinear form ad $h_V(v, v) \ge 0$ for all $v \in V$. Let

$$W = \{ v \in V \mid h_V(v, v') = 0 \text{ for all } v' \in V \}.$$

Define a bilinear form on V/W by

$$h_{V/W}(\overline{v}, \overline{v'}) = h_V(v, v'),$$

where $\overline{v}, \overline{v'} \in V/W$ and $v \in V$ (resp. $v' \in V'$) maps to \overline{v} (resp. $\overline{v'}$) under the canonical map $V \to V/W$.

a.) Show that $h_{V/W}$ is well-defined, i.e. it is independent of the choice of v and v'.

b.) Show that $h_{V/W}$ is an inner product on V/W.

1B. Fix an integer $n \ge 1$ and let P_n be the vector space of polynomials in one variable with complex coefficients and degree at most n. Let $T : P_n \to P_n$ be the linear map given by T(f(x)) = f(x+1).

- a.) Find all eigenvalues and eigenvectors of T.
- b.) Determine the Jordan canonical form of T.

2A. Let \mathbb{F}_3 be the field with three elements. Consider the subgroup of $GL_2(\mathbb{F}_3)$ given by

$$G = \left\{ \begin{pmatrix} a & b \\ & 1 \end{pmatrix} \middle| a \in \mathbb{F}_3^{\times}, b \in \mathbb{F}_3 \right\}.$$

Give an explicit isomorphism $G \simeq S_3$.

- 2B. Prove that no simple group has order $280 = 2^3 \cdot 5 \cdot 7$.
- 3A. Let R be an integral domain and assume that R[x] is a PID. Show that R is a field.

3B. Let
$$R = \mathbb{C}[x, y]/(x^3 + x^2 - y^4)$$

- a.) Prove that R is an integral domain. **Hint:** Consider $f := x^3 + x^2 y^4$ as a polynomial in y with coefficients in the PID $\mathbb{C}[x]$, and use Eisenstein's Criterion.
- b.) Prove that R is not a Unique Factorization Domain.

4A. Let $K = \mathbb{Q}(\sqrt[4]{2}(1+i))$. Determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.

4B. Let $f(x) = x^5 + 20x + 32$ and let K be the splitting field of f over \mathbb{Q} . Prove that $\operatorname{Gal}(K/\mathbb{Q})$ is isomorphic to either A_5 or to D_5 . You may use without proof the facts that f is irreducible modulo 3, and the discriminant of f is $2^{18} \cdot 5^6$.

5A. Let $R = \mathbb{F}_2[t]$ and M be the module over R generated by a, b, c, d subjected to the relations

$$(t+1)a + tb + tc + td = t^{2}a + (t^{2}+1)b + tc + (t^{2}+1)d = 0.$$

Write M and $M \otimes_R M$ as a direct sum of cyclic modules.

5B. Let a, b, c be unknown integers, and let M be the cokernel of the map $\Psi : \mathbb{Z}^3 \to \mathbb{Z}^3$ given by $\Psi(x, y, z) = (6x + 10y + 6z, 4x + 10y + 10z, ax + by + cz)$.

- a.) Do there exist integers a, b, c with $M \simeq \mathbb{Z}/(2) \oplus \mathbb{Z}/(5)$ as abelian groups? Prove your answer.
- b.) Do there exist integers a, b, c with $M \simeq \mathbb{Z}/(2) \oplus \mathbb{Z}/(6)$ as abelian groups? Prove your answer.