ALGEBRA QUALIFYING EXAMINATION

AUGUST 2020

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.

1 A. Let V be a vector space over \mathbb{R} and $h_{V}: V \times V \rightarrow \mathbb{R}$ be a positive semidefinite bilinear form, i.e. h_{V} is a symmetric bilinear form ad $h_{V}(v, v) \geq 0$ for all $v \in V$. Let

$$
W=\left\{v \in V \mid h_{V}\left(v, v^{\prime}\right)=0 \text { for all } v^{\prime} \in V\right\} .
$$

Define a bilinear form on V / W by

$$
h_{V / W}\left(\bar{v}, \overline{v^{\prime}}\right)=h_{V}\left(v, v^{\prime}\right),
$$

where $\bar{v}, \overline{v^{\prime}} \in V / W$ and $v \in V$ (resp. $v^{\prime} \in V^{\prime}$) maps to \bar{v} (resp. $\overline{v^{\prime}}$) under the canonical map $V \rightarrow V / W$.
a.) Show that $h_{V / W}$ is well-defined, i.e. it is independent of the choice of v and v^{\prime}.
b.) Show that $h_{V / W}$ is an inner product on V / W.

1B. Fix an integer $n \geq 1$ and let P_{n} be the vector space of polynomials in one variable with complex coefficients and degree at most n. Let $T: P_{n} \rightarrow P_{n}$ be the linear map given by $T(f(x))=f(x+1)$.
a.) Find all eigenvalues and eigenvectors of T.
b.) Determine the Jordan canonical form of T.

2 A . Let \mathbb{F}_{3} be the field with three elements. Consider the subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ given by

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \\
& 1
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{3}^{\times}, b \in \mathbb{F}_{3}\right\} .
$$

Give an explicit isomorphism $G \simeq S_{3}$.
2B. Prove that no simple group has order $280=2^{3} \cdot 5 \cdot 7$.
3A. Let R be an integral domain and assume that $R[x]$ is a PID. Show that R is a field.
3B. Let $R=\mathbb{C}[x, y] /\left(x^{3}+x^{2}-y^{4}\right)$.
a.) Prove that R is an integral domain. Hint: Consider $f:=x^{3}+x^{2}-y^{4}$ as a polynomial in y with coefficients in the PID $\mathbb{C}[x]$, and use Eisenstein's Criterion.
b.) Prove that R is not a Unique Factorization Domain.

4 A . Let $K=\mathbb{Q}(\sqrt[4]{2}(1+i))$. Determine the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$.
4B. Let $f(x)=x^{5}+20 x+32$ and let K be the splitting field of f over \mathbb{Q}. Prove that $\operatorname{Gal}(K / \mathbb{Q})$ is isomorphic to either A_{5} or to D_{5}. You may use without proof the facts that f is irreducible modulo 3, and the discriminant of f is $2^{18} \cdot 5^{6}$.

5 A . Let $R=\mathbb{F}_{2}[t]$ and M be the module over R generated by a, b, c, d subjected to the relations

$$
(t+1) a+t b+t c+t d=t^{2} a+\left(t^{2}+1\right) b+t c+\left(t^{2}+1\right) d=0 .
$$

Write M and $M \otimes_{R} M$ as a direct sum of cyclic modules.
5B. Let a, b, c be unknown integers, and let M be the cokernel of the map $\Psi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ given by $\Psi(x, y, z)=(6 x+10 y+6 z, 4 x+10 y+10 z, a x+b y+c z)$.
a.) Do there exist integers a, b, c with $M \simeq \mathbb{Z} /(2) \oplus \mathbb{Z} /(5)$ as abelian groups? Prove your answer.
b.) Do there exist integers a, b, c with $M \simeq \mathbb{Z} /(2) \oplus \mathbb{Z} /(6)$ as abelian groups? Prove your answer.

