ALGEBRA QUALIFYING EXAMINATION

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers. Say what you mean, mean what you say.

1A. Let A be an $n \times n$ real skew-symmetric matrix.
i) Prove that the nonzero eigenvalues of A are purely imaginary.
ii) Prove that $\operatorname{det}\left(A+I_{n}\right) \geq 1$.

1B. Let F be a field, and let $M_{n}(F)$ denote the ring of n-by- n matrices in F. Let $A \in$ $M_{n}(F)$ with minimal polynomial equal to its characteristic polynomial. Suppose that $B \in M_{n}(F)$ commutes with A. Show that $B=f(A)$ for some $f \in F[x]$.

2 A. Prove that a finite simple group of even order is generated by elements of order 2 .
2B. Show that all groups of order $5 \cdot 7 \cdot 73$ are cyclic.

3B. Consider the ring $R=\mathbb{Z}[x] /\left(x^{2}\right)$.
i) Show that every ideal of R can be generated by two or fewer elements.
ii) Show that (x) is the only prime ideal of R that is not maximal.

4A. Let $p_{1}<p_{2}<\cdots<p_{r}$ be positive prime numbers for some $r \geq 1$, and let K be the field extension of \mathbb{Q} obtained by adjoining $\sqrt{p_{i}}$ for $1 \leq i \leq r$.
i) Prove that K is a Galois extension of \mathbb{Q} with $\operatorname{Gal}(K / \mathbb{Q})$ an elementary abelian 2-group.
ii) If $E \subset K$ is a subfield of K of degree 2 over \mathbb{Q}, prove that $E=\mathbb{Q}(\sqrt{m})$ for some m that is the product of all elements in a subset of $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$.

4B. Let p be a prime, and let F be a field of characteristic not equal to p. Suppose that F contains a nontrivial p th root of unity, and let $a \in F^{\times}$.
i) Show that a is a p th power in F^{\times}if and only if $x^{p}-a$ is reducible in $F[x]$.
ii) Let E be the splitting field of $x^{p}-a$, and suppose that a is not a p th power in F^{\times}. Determine $\operatorname{Gal}(E / F)$ up to isomorphism.

5A. Let R be a ring with unity. Let M be a left R-module in which the chains of distinct left R-submodules are of finite and bounded length. Let $f: M \rightarrow M$ be a left R module endomorphism. Show that there exist f-stable left R-submodules U and N of M with $M=N \oplus U$ such that f restricts to an isomorphism of U and f restricts to a nilpotent endomorphism of N (i.e., $f^{k}(N)=0$ for k sufficiently large).

5B. Let $f \in \mathbb{Q}[x]$ be a polynomial of degree $n \geq 1$ with exactly r real roots in \mathbb{C}.
i) Show that f factors in $\mathbb{R}[x]$ as a product of r linear and $(n-r) / 2$ quadratic polynomials. (You may use the fundamental theorem of algebra.)
ii) Let $K=\mathbb{Q}[x] /(f)$. Show that

$$
\mathbb{R} \otimes_{\mathbb{Q}} K \cong \mathbb{R}^{r} \times \mathbb{C}^{(n r) / 2}
$$

