ALGEBRA QUALIFYING EXAMINATION

JANUARY 2015

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers. Say what you mean, mean what you say. Any ring denoted R is a commutative ring with identity.

1A. Let A be an $n \times n$ matrix with entries in \mathbb{R}. Prove that the rank of A is equal to the rank of $A^{T} A$.

1B. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be 2×2 matrices with real entries. Define $A \otimes B$ to be the 4×4 matrix which in block form is given by $\left(\begin{array}{ll}A b_{11} & A b_{12} \\ A b_{21} & A b_{22}\end{array}\right)$. Prove that $A \otimes B$ is invertible if and only if both A, B are invertible.

2A. Let G be a group. A subgroup $H<G$ is said to be a characteristic subgroup if $\varphi(H)=H$ for every automorphism φ of G.
(a) Prove that every characteristic subgroup is normal.
(b) Give an example of a group G and a normal subgroup H such that H is not characteristic.

2B. Let G be a group with exactly 3 conjugacy classes. Prove that either $G \simeq S_{3}$ (the symmetric group on 3 letters) or $G \simeq C_{3}$ (the cyclic group of order 3).

3A. Let R be an integral domain containing a subring k which is a field.
(a) If R is finite-dimensional as a k-vector space, prove that R is a field.
(b) Show by example that if R is not finite-dimensional over k, then R need not be a field.

3B. Determine, with proof, all of the ideals in the ring $\mathbb{Z}[x] /\left(2, x^{3}-1\right)$.
4A. Suppose that K / \mathbb{Q} is a Galois extension with $[K: \mathbb{Q}]$ odd. If K is the splitting field of the polynomial $f(x) \in \mathbb{Q}[x]$, prove that all roots of $f(x)$ are real.

4B. Give, with proof, an explicit example of a field extension E / \mathbb{Q} having the following two properties.

- There are exactly two fields K, L lying strictly between \mathbb{Q} and E, and
- Neither $K \subset L$ nor $L \subset K$.

5A. Let R be a commutative ring (with 1). Recall that an R-module M is torsion if for every $m \in M$ there exists a nonzero $r \in R$ with $r m=0$, and is torsion-free if M contains no nonzero torsion submodules.
(a) If M and N are torsion R-modules, prove that $M \otimes_{R} N$ is also torsion.
(b) Let $R=\mathbb{C}[X, Y]$ and let $M:=(X, Y)$ be the ideal of R generated by X and Y.
(i) Show that M is torsion-free as an R-module.
(ii) Prove that $X \otimes Y-Y \otimes X \in M \otimes_{R} M$ is nonzero. Hint: Consider the map $M \times M \rightarrow \mathbb{C}$ given by $(f, g) \mapsto(\partial f / \partial X)(0,0)$. $(\partial g / \partial Y)(0,0)$.
(iii) Prove that the R-submodule of $M \otimes_{R} M$ generated by $X \otimes Y-$ $Y \otimes X \in M \otimes_{R} M$ is torsion, and conclude that $M \otimes_{R} M$ is not torsion-free.

5B. List as many non-commutative semisimple \mathbb{R}-algebras of \mathbb{R}-dimension 8 as you can. (1 point for each distinct isomorphism class of algebras in your list, to a maximum of 10.)

