ALGEBRA QUALIFYING EXAMINATION

JANUARY 2015

Do either one of nA or nB for $1 \le n \le 5$. Justify all your answers. Say what you mean, mean what you say. Any ring denoted R is a commutative ring with identity.

- 1A. Let A be an $n \times n$ matrix with entries in \mathbb{R} . Prove that the rank of A is equal to the rank of $A^T A$.
- 1B. Let $A = (a_{ij})$ and $B = (b_{ij})$ be 2 × 2 matrices with real entries. Define $A \otimes B$ to be the 4×4 matrix which in block form is given by $\begin{pmatrix} Ab_{11} & Ab_{12} \\ Ab_{21} & Ab_{22} \end{pmatrix}$. Prove that $A \otimes B$ is invertible if and only if both A, B are invertible.
- 2A. Let G be a group. A subgroup H < G is said to be a *characteristic subgroup* if $\varphi(H) = H$ for every automorphism φ of G.
 - (a) Prove that every characteristic subgroup is normal.
 - (b) Give an example of a group G and a normal subgroup H such that H is not characteristic.
- 2B. Let G be a group with exactly 3 conjugacy classes. Prove that either $G \simeq S_3$ (the symmetric group on 3 letters) or $G \simeq C_3$ (the cyclic group of order 3).
- 3A. Let R be an integral domain containing a subring k which is a field.
 - (a) If R is finite-dimensional as a k-vector space, prove that R is a field.
 - (b) Show by example that if R is not finite-dimensional over k, then R need not be a field.
- 3B. Determine, with proof, all of the ideals in the ring $\mathbb{Z}[x]/(2, x^3 1)$.
- 4A. Suppose that K/\mathbb{Q} is a Galois extension with $[K : \mathbb{Q}]$ odd. If K is the splitting field of the polynomial $f(x) \in \mathbb{Q}[x]$, prove that all roots of f(x) are real.
- 4B. Give, with proof, an explicit example of a field extension E/\mathbb{Q} having the following two properties.
 - There are exactly two fields K, L lying strictly between Q and E, and
 Neither K ⊂ L nor L ⊂ K.
- 5A. Let R be a commutative ring (with 1). Recall that an R-module M is torsion if for every $m \in M$ there exists a nonzero $r \in R$ with rm = 0, and is torsion-free if M contains no nonzero torsion submodules.
 - (a) If M and N are torsion R-modules, prove that $M \otimes_R N$ is also torsion.
 - (b) Let $R = \mathbb{C}[X, Y]$ and let M := (X, Y) be the ideal of R generated by X and Y.
 - (i) Show that M is torsion-free as an R-module.
 - (ii) Prove that $X \otimes Y Y \otimes X \in M \otimes_R M$ is nonzero. **Hint:** Consider the map $M \times M \to \mathbb{C}$ given by $(f,g) \mapsto (\partial f/\partial X)(0,0) \cdot (\partial g/\partial Y)(0,0)$.

- (iii) Prove that the *R*-submodule of $M \otimes_R M$ generated by $X \otimes Y Y \otimes X \in M \otimes_R M$ is torsion, and conclude that $M \otimes_R M$ is not torsion–free.
- 5B. List as many non-commutative semisimple \mathbb{R} -algebras of \mathbb{R} -dimension 8 as you can. (1 point for each distinct isomorphism class of algebras in your list, to a maximum of 10.)