Algebra Qualifying Examination

January 2016
Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.

1A. Let A, B be two square matrices over a field F. Suppose that $\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right)$ is similar to $\left(\begin{array}{cc}B & 0 \\ 0 & B\end{array}\right)$. Prove that A is similar to B.

1B. Let F be an infinite field and let V be a F-vector space. Show that if $V=\cup_{i=1}^{n} V_{i}$ for F-subspaces, V_{1}, \ldots, V_{n}, then there is $j \in\{1, \ldots, n\}$ with $V=V_{j}$.

2 A . Show that the automorphism group of the quaternion group of order 8 is a semidirect product of a group of order 4 and a group of order 6 .

2B. Let G be a finite simple (abelian or non-abelian) group of order n. Find the number of normal subgroups of $G \times G$.

3A. Give a complete proof of the Hilbert Basis Theorem: If R is a commutative Noetherian ring with identity, then so is $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

3B. Let R be a PID and I a nonzero ideal of R. Show that there are only finitely many ideals of R containing I. Show by example that this may not hold if R is a UFD but not a PID.

4 A . Let $F=\mathbb{C}$, let $K=\mathbb{C}(t)$, the field of rational functions in an indeterminate t, and let G be the Galois group $G(K / F)$. Suppose φ and θ in G are determined by $\varphi(t)=\zeta t$ and $\theta(t)=1 / t$, where ζ is a primitive nth root of unity in $\mathbb{C}, n \geq 4$, and set $H=\langle\varphi, \theta\rangle \leq G$. Show that H is isomorphic with the dihedral group D of order $2 n$ and show that the fixed field of H is $\mathbb{C}\left(t^{n}+t^{-n}\right)$.

4B. Let $\xi \in \mathbb{C}$ be such that $\xi^{2015}=3$. Show that -3 is not a sum of squares in $\mathbb{Q}(\xi)$.

5A. Let G be the group given by the presentation $\left\langle x, y, z \mid x^{2}, y^{3},(x y z)^{4}\right\rangle$. Write the commutator factor group $G /[G, G]$ as a direct product of cyclic groups and justify your answer.

5B. Let A be a finite dimensional, associative (not necessarily commutative) \mathbb{C}-algebra with no zero divisors, but with identity. Show that $\operatorname{dim}_{\mathbb{C}} A=$ 1.

