Do either one of nA or nB for $1 \le n \le 5$. Justify all your answers.

1A.

(a) Suppose A is an $n \times n$ matrix with real entries such that all eigenvalues of A are positive. Prove that A + I must be invertible.

(b) Let $t \in \mathbb{R}$ such that t is not an integer multiple of π . For the matrix

$$A = \begin{bmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{bmatrix},$$

prove that there does not exist a real matrix B such that BAB^{-1} is a diagonal matrix.

1B. Prove the following.

a) Let $L: V \to V$ be a linear map on a vector space V over the field of real numbers. Suppose that L is nilpotent (i.e., $L^k = 0$ for some positive integer k). Show that M := I - L is invertible by finding an explicit formula for $(I - L)^{-1}$.

b) Let $\lambda \in \mathbb{R} \setminus \{0\}$. For the matrix

$$A = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix},$$

prove that there does not exist a real matrix B such that BAB^{-1} is a diagonal matrix.

2A. Let H be a subgroup of a finite group G if index p, where p is the smallest prime number dividing |G|. Prove that H is normal in G. (Hint: Consider the homomorphism $G \to A(S)$ induced from the action of G on the cosets S := G/H, where A(S) is the group of permutations of S. If K is the kernel of $G \to A(S)$, then G/K is isomorphic to a subgroup of the symmetric group.)

2B. Prove the following.

- (a) A solvable simple group is Abelian.
- (b) A simple abelian group is finite and has prime order.
- (c) A solvable group with a composition series is finite.

3A. Let $D = Z[\sqrt{21}] = \{m + n\sqrt{21} | m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{21})$, the field of fractions of D. Show that $x^2 - x - 5$ is irreducible in D[x] but not in F[x], and conclude that D is not a unique factorization domain.

3B. Prove that $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} | a, b \in \mathbb{Z}\}$ is a Euclidean domain.

4A. Show that the Galois group of $(x^2 - 2)(x^2 + 2)$ over \mathbb{Q} is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

4B. Let F be a finite, normal extension of \mathbb{Q} for which $|\operatorname{Gal}(F/\mathbb{Q})| = 8$ and each nonidentity element of $\operatorname{Gal}(F/\mathbb{Q})$ has order 2. Find the number of subfields of F that have degree 4 over \mathbb{Q} and provide a proof for your answer.

5A. Let N be a submodule of a free finitely generated module F over a PID R. Show that N is a direct summand of F if and only if $N \cap aF = aN$ for all $a \in R$.

5B. Suppose that R is a ring with 1 and P is a unitary R-module (i.e., $1 \cdot m = m$ for all $m \in P$). The module P is called projective if for any surjective homomorphism $g: M \to N$ of R-modules and any homomorphism $f: P \to N$ of R-modules, there exists a homomorphism $h: P \to M$ of R-modules such that f = gh.

(a) Show that an R-module P is projective if and only if P is direct summand of some free module F.

(b) Suppose R is a PID. Show that every projective R-module is free.