Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.

1 A .
(a) Suppose A is an $n \times n$ matrix with real entries such that all eigenvalues of A are positive. Prove that $A+I$ must be invertible.
(b)) Let $t \in \mathbb{R}$ such that t is not an integer multiple of π. For the matrix

$$
A=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

prove that there does not exist a real matrix B such that $B A B^{-1}$ is a diagonal matrix.

1B. Prove the following.
a) Let $L: V \rightarrow V$ be a linear map on a vector space V over the field of real numbers. Suppose that L is nilpotent (i.e., $L^{k}=0$ for some positive integer k). Show that $M:=I-L$ is invertible by finding an explicit formula for $(I-L)^{-1}$.
b) Let $\lambda \in \mathbb{R} \backslash\{0\}$. For the matrix

$$
A=\left[\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right]
$$

prove that there does not exist a real matrix B such that $B A B^{-1}$ is a diagonal matrix.

2A. Let H be a subgroup of a finite group G if index p, where p is the smallest prime number dividing $|G|$. Prove that H is normal in G. (Hint: Consider the homomorphism $G \rightarrow A(S)$ induced from the action of G on the cosets $S:=G / H$, where $A(S)$ is the group of permutations of S. If K is the kernel of $G \rightarrow A(S)$, then G / K is isomorphic to a subgroup of the symmetric group.)

2B. Prove the following.
(a) A solvable simple group is Abelian.
(b) A simple abelian group is finite and has prime order.
(c) A solvable group with a composition series is finite.

3A. Let $D=Z[\sqrt{21}]=\{m+n \sqrt{21} \mid m, n \in \mathbb{Z}\}$ and $F=\mathbb{Q}(\sqrt{21})$, the field of fractions of D. Show that $x^{2}-x-5$ is irreducible in $D[x]$ but not in $F[x]$, and conclude that D is not a unique factorization domain.

3B. Prove that $\mathbb{Z}[\sqrt{-2}]=\{a+b \sqrt{-2} \mid a, b \in \mathbb{Z}\}$ is a Euclidean domain.
4A. Show that the Galois group of $\left(x^{2}-2\right)\left(x^{2}+2\right)$ over \mathbb{Q} is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

4B. Let F be a finite, normal extension of \mathbb{Q} for which $|\operatorname{Gal}(F / \mathbb{Q})|=8$ and each nonidentity element of $\operatorname{Gal}(F / \mathbb{Q})$ has order 2. Find the number of subfields of F that have degree 4 over \mathbb{Q} and provide a proof for your answer.

5 A . Let N be a submodule of a free finitely generated module F over a PID R. Show that N is a direct summand of F if and only if $N \cap a F=a N$ for all $a \in R$.

5B. Suppose that R is a ring with 1 and P is a unitary R-module (i.e., $1 \cdot m=m$ for all $m \in P$). The module P is called projective if for any surjective homomorphism $g: M \rightarrow N$ of R-modules and any homomorphism $f: P \rightarrow N$ of R-modules, there exists a homomorphism $h: P \rightarrow M$ of R-modules such that $f=g h$.
(a) Show that an R-module P is projective if and only if P is direct summand of some free module F.
(b) Suppose R is a PID. Show that every projective R-module is free.

