ALGEBRA QUALIFYING EXAMINATION

JANUARY 2018

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.

1A. Let X be an $n \times n$ matrix over a field k such that $X^{2}=X$.
(1) Prove that X is diagonalizable over k.
(2) If Y is another $n \times n$ matrix over k such that $Y^{2}=Y$, then Y is conjugate to X if and only if $\operatorname{rank} X=\operatorname{rank} Y$.

1B. Let $T: V \rightarrow V$ be a linear operator on a finite-dimensional inner product space V over a field k and T^{*} be its adjoint. Prove that T is an orthogonal projection if and only if $T^{2}=T=T^{*}$.

2A. Let $p<q$ be primes.
(1) Assume that $p \nmid q-1$. Prove that every group of order $p q$ is cyclic.
(2) Give an explicit example of primes $p<q$, where $p \mid q-1$ and a finite group of order $p q$ that is not cyclic.

2B.
(1) Show that there is no simple group of order $200\left(=2^{3} \cdot 5^{2}\right)$.
(2) Prove that any group of order $588\left(=2^{2} \cdot 3 \cdot 7^{2}\right)$ is solvable, given that any group of order 12 is solvable.

3A. Let A be a commutative noetherian ring with 1 .
(1) Let $I \subseteq A$ be an ideal. Prove that A / I is a noetherian ring.
(2) Give an explicit example of a noetherian ring A and a unital subring $B \subseteq A$ such that B is not a noetherian ring.

3B. Let $D=\mathbb{Z}[\sqrt{5}]=\{m+n \sqrt{5} \mid m, n \in \mathbb{Z}\}$ and $F=\mathbb{Q}(\sqrt{5})$, the field of fractions of D. Show the following:
(1) $x^{2}+x-1$ is irreducible in $D[x]$.
(2) $x^{2}+x-1$ is not irreducible in $F[x]$.
(3) D is not a unique factorization domain.

4A. Let $f(x)=\left(x^{2}-3\right)\left(x^{2}-5\right)\left(x^{2}-15\right)$. Calculate the splitting field K of f over \mathbb{Q}, the group $\operatorname{Gal}(K / \mathbb{Q})$, and list all fields L such that $\mathbb{Q} \subseteq L \subseteq K$.

4B. Let $f(x)=x^{4}+x^{3}+x^{2}+x+1$. Let ω be a root of the polynomial $f(x)$ in \mathbb{C} and $K=\mathbb{Q}(\omega)$. Prove that K / \mathbb{Q} is a Galois extension, determine the Galois group $\operatorname{Gal}(K / \mathbb{Q})$, and list all fields L such that $\mathbb{Q} \subseteq L \subseteq K$.

5A. Let A be a commutative ring with 1 . Let M and N be finitely generated A-modules. Prove that $M \otimes_{A} N$ is a finitely generated A-module.

5B. Let M be a finitely generated R-module and $\mathfrak{a} \subset R$ an ideal in a commutative ring R with 1. Suppose $\psi: M \rightarrow M$ is an R-module homomorphism such that $\psi(M) \subset \mathfrak{a} M$. Find a monic polynomial $p(t) \in R[t]$ with coefficients from \mathfrak{a} such that $p(\psi)=0$.

