Do either one of nA or nB for $1 \leq n \leq 5$. Justify all your answers.

1A. Let A be a complex 6 by 6 matrix. Suppose that $A^3 = I$. List the possible Jordan canonical forms for A.

1B. Find a real orthogonal 2 by 2 matrix P such that $P^{-1}AP$ is diagonal for

$$A = \begin{pmatrix} 6 & -2 \\ -2 & 3 \end{pmatrix}.$$

2A. Let G be a finite group. Let p be the smallest prime dividing the order of G. Show that any subgroup of G of index p is normal.

2B. Show that the group given by the presentation $\langle a, b | a^2, b^2 \rangle$ is an infinite group.

3A. Recall that a ring A is artinian if every descending chain of ideals stabilizes. Let A be commutative ring with 1 that is artinian and an integral domain. Prove that A is a field.

3B. Find a maximal ideal in $\mathbb{C}[x, y]$ that does not contain xy and find a prime ideal that is not maximal and does not contain xy.

4A. Let k be a field. Answer true or false for the following statements. If true, then very briefly sketch a proof outline (1-3 lines). If false, then state an explicit counterexample.

(1) Every field extension of k of degree 2 is normal.

(2) Every field extension of k of degree 2 is of the form $k(\sqrt{\beta})$, where $\beta \in k$.
4B. Determine the Galois group of the polynomial \(x^3 - 2 \)
 a) over \(\mathbb{Q} \),
 b) over \(\mathbb{F}_7 \),
 c) over \(\mathbb{F}_9 \).

5A. Let \(R \) be a commutative ring with 1. Let \(M \) and \(N \) be finitely generated \(R \)-modules. Prove that the tensor product \(M \otimes_R N \) is a finitely generated \(R \)-module.

5B. Let \(R \) be a finite semisimple ring with 1. Suppose that no fourth power \(n^4 \) for \(n \in \mathbb{N}, n > 1 \), divides \(|R| \). Show that \(R \) is commutative.