ALGEBRA QUALIFYING EXAMINATION

JANUARY 2021

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.

1A. Let V be the space of polynomials of degree at most n. Define a linear operator on V by

$$
D: V \rightarrow V, \quad D(p(x))=p^{\prime}(x)+2 p^{\prime \prime}(x) .
$$

Find the characteristic polynomial of D.
1B. Let A be an $n \times n$, real, skew-symmetric matrix. Prove that $\operatorname{det}\left(I_{n}+A\right) \geq 1$.
2A. Let G be a finite group and H, K be two subgroups. Show that for any $g \in G$ we have

$$
\# H g K=\# H \cdot\left[K: g^{-1} H g \cap K\right]
$$

2B. Classify (up to isomorphism) all finite groups with exactly 3 conjugacy classes.
3A. Show that the subring of $\mathbb{Q}(x)$ given by

$$
\left\{\left.\frac{f(x)}{g(x)} \right\rvert\, f(x), g(x) \in \mathbb{Q}[x], g(0) \neq 0\right\}
$$

has only one maximal ideal. Explicitly describe this maximal ideal.
3B. Let R be a commutative (unital) ring and I, J ideals of R with $I+J=R$. Prove that for all positive integers m, n one has $I^{m}+J^{n}=R$.
4A. Let $f(x) \in \mathbb{Q}[x]$ be a degree n polynomial and E be the splitting field of $f(x)$. Show that $[E: \mathbb{Q}]$ divides $n!$.
4B. Let $p_{1}<p_{2}<\cdots<p_{n}$ be positive prime numbers, and let K be the extension of \mathbb{Q} obtained by adjoining all $\sqrt{p_{i}}$ for $1 \leq i \leq n$. Prove that every subfield of K of degree 2 over \mathbb{Q} is of the form $\mathbb{Q}(\sqrt{d})$ with d a product of the elements in some nonempty subset of $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
5A. Let R be a commutative (unital) ring and M a noetherian R-module. Let $\varphi: M \rightarrow M$ be an R-module homomorphism. Show the following.
(1) The chain of submodules

$$
\operatorname{Ker} \varphi \subset \operatorname{Ker} \varphi^{2} \subset \operatorname{Ker} \varphi^{3} \subset \cdots
$$

stabilizes.
(2) We have

$$
\operatorname{Ker} \varphi^{n} \cap \operatorname{Im} \varphi^{n}=\{0\}
$$

if n is sufficiently large.
(3) If φ is surjective then it is an isomorphism.

5B. Let $M=\mathbb{Z}^{3}$ and let N be the \mathbb{Z}-submodule of M generated by $(2,-1,0),(3,4,1)$, and $(5,-3,2)$. Express M / N as a direct sum of cyclic \mathbb{Z}-modules.

