ALGEBRA QUALIFYING EXAMINATION

SPRING 2024

1A. For \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \), let \(||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} \). For a linear map \(A: \mathbb{R}^n \rightarrow \mathbb{R}^n \), set \(||A|| = \sup_{||x||=1} ||Ax|| \) (the supremum is taken over all \(x \in \mathbb{R}^n \) such that \(||x|| = 1 \)). Suppose that \(||A|| < 1 \). Prove that \(A + I \), where \(I \) is the identity map, is invertible.

1B. Let

\[
M = \begin{pmatrix}
4 & 2 & -2 & 5 & -1 \\
0 & 4 & 0 & 2 & 3 \\
0 & 0 & 4 & 2 & 3 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 4
\end{pmatrix}
\]

be a matrix over \(\mathbb{C} \). Find the Jordan canonical form of \(M \).

2A. Recall that the exponent of a finite group \(G \) is the minimal positive integer \(k \) such that \(x^k = e \) for all \(x \in G \). Suppose a group \(G \) has order 12 and exponent 12. Prove that \(G \) has a subgroup of index 2.

2B. Let \(G \) be a finite group, \(H \) a normal subgroup of \(G \), and \(P \) a Sylow \(p \)-subgroup of \(G \). Prove that \(P \cap H \) is a Sylow \(p \)-subgroup of \(H \).

3A. Suppose \(\mathbb{F} \) is a field, and \(p \in \mathbb{F}[x] \) is a degree \(n \) polynomial which has \(n \) distinct roots in \(\mathbb{F} \). Prove that the ring \(\mathbb{F}[x]/(p) \) is isomorphic to \(\mathbb{F}^n = \mathbb{F} \oplus \cdots \oplus \mathbb{F} \).

3B. Let \(R \) be a commutative ring with 1. Prove that if \(R[x] \) is a PID, then \(R \) is a field.

4A. Consider the polynomial \(p(x) = x^4 - 3x^2 + 3 \).
 (a) Let \(\pm \alpha, \pm \beta \) be its roots. Calculate \(\alpha^2 \beta^2 (\alpha^2 - \beta^2)^2 \).
 (b) Prove that the Galois group of \(p(x) \) over \(\mathbb{Q}[\sqrt{-1}] \) is cyclic.

4B. Let \(K = F(\alpha) \) be a Galois extension of \(F \), with \(\alpha \not\in F \). Suppose there exists \(\sigma \in \text{Gal}(K/F) \) such that \(\sigma(\alpha) = \alpha^{-1} \). Prove that the degree of the extension \([K:F] \) is even and \([F(\alpha + \alpha^{-1}):F] = \frac{1}{2}[K:F] \).

5A. Find invariant factors of the \(\mathbb{Z} \)-module \(M = (\mathbb{Z}^2 \oplus \mathbb{Z}_6) \otimes_{\mathbb{Z}} (\mathbb{Z} \oplus \mathbb{Z}_4) \), i.e. integers \(d_1 | \cdots | d_n \) such that \(M \cong \mathbb{Z}/(d_1) \oplus \cdots \oplus \mathbb{Z}/(d_n) \).

5B. Let \(R \) be a commutative ring, and \(M \) be a Noetherian \(R \)-module. Suppose \(f: M \rightarrow M \) is a surjective homomorphism. Prove that \(f \) is an isomorphism.