Analysis Qualifying Exam - August 2016

PLEASE SHOW ALL YOUR WORK

- Problem 1. Let $f_n(x) \ge 0$ be continuous functions on [0, 1]. Suppose that $\lim_{n\to\infty} \int_0^1 f_n(x) dx = 0$ and that for all x, $\lim_{n\to\infty} f_n(x) = 0$. Prove or disprove that f_n must converge uniformly to 0 on [0, 1].
- Problem 2. Let (X, μ) be a σ -finite measure space. Prove that $\mu(X) < \infty$ if and only if $L^2(X, \mu) \subset L^1(X, \mu)$.

Problem 3. Let m be Lebesgue measure on [0,1]. Given $f \in L^2([0,1],m)$ define

$$Kf(x) = \frac{1}{x^{4/3}} \int_0^x f(t)dt.$$

- (a) Show that there is a constant C such that $||Kf||_1 \leq C||f||_2$ for all $f \in L^2([0,1],m)$, i.e., K is a bounded operator from $L^2([0,1],m)$ to $L^1([0,1],m)$.
- (b) Find the operator norm of K.

Problem 4. Let (X, μ) be a finite measure space. Let $f \in L^1(X, \mu)$. For $t \in \mathbb{R}$ define

$$g(t) = \int_X \cos(tf(x))d\mu(x)$$

Prove that g(t) is differentiable for all t and that the derivative is a continuous function on $I\!\!R$.

- Problem 5. Let f_n be absolutely continuous functions on [a, b], $f_n(a) = 0$ for all n. Suppose f'_n is a Cauchy sequence in $L^1([a, b], m)$ where m is the Lebesgue measure. Show that there exists an absolutely continuous function f on [a, b] such that $f_n \to f$ uniformly on [a, b].
- Problem 6. Let $f, f_k : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable functions such that $f_k \to f$ a.e. and there exists a Lebesgue integrable function $g \ (g \in L^1(\mathbb{R}))$ such that

$$|f_k(x)| \leq g(x)$$
 a.e. for all k.

The goal in this problem is to prove that $f_k \to f$ almost uniformly, i.e., for any $\delta > 0$ there exists $E \subset \mathbb{R}$ such that $m(E) < \delta$ and $f_k \to f$ uniformly on E^c . The measure m is Lebesgue measure. Let $X_0 = \{x : g(x) = 0\}$ and $X_n = \{x : |g(x)| \ge 1/n\}$ for $n \in \mathbb{N}$ so that $\mathbb{R} = \bigcup_{n=0}^{\infty} X_n$.

- (a) Show that X_n has finite measure for all $n \ge 1$.
- (b) Show that for any $\delta > 0$, there is a set E such that $m(E) < \delta$ and for all $n \ge 1$ the sequence f_k converges to f uniformly on $E^c \cap X_n$.
- (c) Show that f_k converges to f uniformly on E^c .