ANALYSIS QUALIFYING EXAM

FALL 2017

Please show all of your work. GOOD LUCK!

(1) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. For any $n \ge 1$, take $f_n : \mathbb{R} \to \mathbb{R}$ as

$$f_n(x) = \int_0^1 f\left(x + \frac{y}{n}\right) dy$$

a) Find $\lim_{n\to\infty} f_n(x)$ and show that f_n converges uniformly to this function on every compact interval of \mathbb{R} .

b) Show, by counterexample, that this convergence need not be uniform on the entire real line.

(2) a) Let $A \subset [0, 1]$ be a set of Lebesgue measure 0. Show that $B := \{x^2 : x \in A\}$ also has Lebesgue measure 0.

b) Let $g:[0,1] \to \mathbb{R}$ be an absolutely continuous, monotone function, and let $A \subset [0,1]$ be a set of Lebesgue measure 0. Show that g(A) also has Lebesgue measure 0.

(3) Let p and q be conjugate exponents with $1 < p, q < \infty$. For any $f \in L^p([0,1])$ set

$$g(x) = \int_0^x f(t) \, dt \, .$$

Show that $g \in L^q([0,1])$ and prove that

$$||g||_q \le 2^{-1/q} ||f||_p$$

(4) Let μ be a finite Borel measure on \mathbb{R} . For any $f \in L^1(\mu)$, compute, with justification,

$$\lim_{n\to\infty}\int_0^1 |f(x)|^{1/n}d\mu(x).$$

FALL 2017

(5) Let $I = [-\pi, \pi]$. For each $n \ge 1$, let $f_n : I \to \mathbb{R}$ be given by

 $f_n(x) = c_n \sin(nx)$ with $c_n \in \mathbb{C}$.

a) Find necessary and sufficient conditions on the coefficients c_n for the sequence f_n to converge to zero in $L^2(I)$. b) Find necessary and sufficient conditions on the coefficients c_n for the sequence f_n to weakly converge to zero in $L^2(I)$.

Recall: f_n converges weakly to f in a Hilbert space \mathcal{H} if $\langle g, f_n \rangle \to \langle g, f \rangle$ for all $g \in \mathcal{H}$.

(6) Consider the function

$$I(f) = \int_0^1 f(x) \ln f(x) dx$$

defined on the set of non-negative $L^1([0,1])$ functions; here the integral is with respect to Lebesgue measure on the unit interval [0,1]. a) Show that I is convex. **Hint:** It may be useful to consider the function $\phi : [0,1] \to \mathbb{R}$ given by $\phi(t) = t \ln(t)$ with $\phi(0) = 0$. b) Show that I is lower semi-continuous, i.e.

$$I(f) \le \liminf_{n \to \infty} I(f_n)$$

whenever f_n is a sequence of non-negative functions converging in $L^1([0,1])$ to f. **Hint:** $\phi(t)$ is bounded below.

 $\mathbf{2}$