ANALYSIS QUALIFYING EXAM

FALL 2017

Please show all of your work. GOOD LUCK!
(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. For any $n \geq 1$, take $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f_{n}(x)=\int_{0}^{1} f\left(x+\frac{y}{n}\right) d y
$$

a) Find $\lim _{n \rightarrow \infty} f_{n}(x)$ and show that f_{n} converges uniformly to this function on every compact interval of \mathbb{R}.
b) Show, by counterexample, that this convergence need not be uniform on the entire real line.
(2) a) Let $A \subset[0,1]$ be a set of Lebesgue measure 0 . Show that $B:=\left\{x^{2}: x \in A\right\}$ also has Lebesgue measure 0 .
b) Let $g:[0,1] \rightarrow \mathbb{R}$ be an absolutely continuous, monotone function, and let $A \subset[0,1]$ be a set of Lebesgue measure 0 . Show that $g(A)$ also has Lebesgue measure 0 .
(3) Let p and q be conjugate exponents with $1<p, q<\infty$. For any $f \in L^{p}([0,1])$ set

$$
g(x)=\int_{0}^{x} f(t) d t
$$

Show that $g \in L^{q}([0,1])$ and prove that

$$
\|g\|_{q} \leq 2^{-1 / q}\|f\|_{p}
$$

(4) Let μ be a finite Borel measure on \mathbb{R}. For any $f \in L^{1}(\mu)$, compute, with justification,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}|f(x)|^{1 / n} d \mu(x)
$$

(5) Let $I=[-\pi, \pi]$. For each $n \geq 1$, let $f_{n}: I \rightarrow \mathbb{R}$ be given by

$$
f_{n}(x)=c_{n} \sin (n x) \quad \text { with } \quad c_{n} \in \mathbb{C} .
$$

a) Find necessary and sufficient conditions on the coefficients c_{n} for the sequence f_{n} to converge to zero in $L^{2}(I)$.
b) Find necessary and sufficient conditions on the coefficients c_{n} for the sequence f_{n} to weakly converge to zero in $L^{2}(I)$.
Recall: f_{n} converges weakly to f in a Hilbert space \mathcal{H} if $\left\langle g, f_{n}\right\rangle \rightarrow\langle g, f\rangle$ for all $g \in \mathcal{H}$.
(6) Consider the function

$$
I(f)=\int_{0}^{1} f(x) \ln f(x) d x
$$

defined on the set of non-negative $L^{1}([0,1])$ functions; here the integral is with respect to Lebesgue measure on the unit interval $[0,1]$. a) Show that I is convex. Hint: It may be useful to consider the function $\phi:[0,1] \rightarrow \mathbb{R}$ given by $\phi(t)=t \ln (t)$ with $\phi(0)=0$.
b) Show that I is lower semi-continuous, i.e.

$$
I(f) \leq \liminf _{n \rightarrow \infty} I\left(f_{n}\right)
$$

whenever f_{n} is a sequence of non-negative functions converging in $L^{1}([0,1])$ to f. Hint: $\phi(t)$ is bounded below.

