Please show all of your work and state any basic results from analysis which you use.

1. For subsets A and B of \mathbb{R}^2, define $A + B = \{x + y | x \in A \text{ and } y \in B\}$. Prove the following statements:

 (a) If A is closed and B is open in \mathbb{R}^2, then $A + B$ is open.

 (b) If A is closed and B is compact, then $A + B$ is closed.

2. Define $F(\lambda) = \int_1^\infty \frac{e^{-\lambda t}}{t} dt$ for all $\lambda > 0$. Show that, for all $0 < \alpha \leq 1$, there is a constant $C_\alpha < \infty$ such that $F(\lambda) \leq C_\alpha \lambda^{-\alpha}$ for all $\lambda > 0$, but there is no $C < \infty$ such that $F(\lambda) \leq C$ for all $\lambda > 0$.

3. Suppose that $F(x)$ is a right continuous function of bounded variation on \mathbb{R}, μ is the corresponding complex measure, and $\phi(x)$ is a smooth function on \mathbb{R} having compact support. Show that

\[
- \int_\mathbb{R} \phi'(x)F(x)\,dx = \int_\mathbb{R} \phi(y)d\mu(y)
\]

Under what conditions is

\[
- \int_\mathbb{R} \phi'(x)F(x)\,dx = \int_\mathbb{R} \phi(y)F'(y)\,dy
\]

Clarifications: μ and F are related by $\mu([-\infty, b]) = F(b)$. In the second displayed line, $F'(y)$ denotes the pointwise derivative (as in calculus), which is known to exist for Lebesgue almost every y.

4. Determine whether the following statements are true or false and justify your answer (a picture and brief explanation is acceptable).

 (a) $C(\mathbb{R}) \cap L^1(\mathbb{R}, dx) \subset C_0(\mathbb{R})$, i.e. a continuous Lebesgue integrable function vanishes at infinity.

 (b) $L^1 \cap L^\infty(\mathbb{R}, dx) \subset L^2(\mathbb{R}, dx)$.

5. Let $\mathcal{P} \subset C([0, 1])$ denotes the subspace of polynomials. Determine whether the following linear functionals have continuous extensions to $C([0, 1])$:

 (a) $\Phi(p) = a_0$

 (b) $\Psi(p) = a_0 + a_1$
where \(p(x) = a_0 + a_1 x + \ldots + a_n x^n \).

6. Show that the Fourier transform of a finite measure is a uniformly continuous function on \(\mathbb{R}^n \) (with the Euclidean metric).