Analysis qualifying exam - January 2014

In problems 1, 2, 3 and 5 , the measure for $L^{p}([a, b])$ is Lebesgue measure, and the integrals are with respect to Lebesgue measure.
(1) Let $f \in L^{1}([0,1])$. For $x \in(0,1)$ define

$$
h(x)=\int_{x}^{1} \frac{f(t)}{t} d t
$$

Prove that $h \in L^{1}([0,1])$ and

$$
\int_{0}^{1} h(x) d x=\int_{0}^{1} f(x) d x
$$

(2) Let E_{n} be a sequence of Lebesque measurable sets in $[0,1]$, and let k be a real number, $0 \leq k \leq 1$. Suppose that

$$
\lim _{n \rightarrow \infty} m\left(E_{n} \cap[0, a]\right)=k a
$$

for every $a, 0 \leq a \leq 1$; here m is the Lebesgue measure. Prove that

$$
\lim _{n \rightarrow \infty} \int_{E_{n}} f(x) d x=k \int_{[0,1]} f(x) d x
$$

for every function $f(x) \in L^{1}([0,1])$.
(3) Let $f_{n}(x)$ be a sequence of absolutely continuous functions on $[0,1]$ with $f_{n}(0)=0$. Suppose that $f_{n}^{\prime}(x)$ converges to $g(x)$ in $L^{1}([0,1])$. Prove that $f_{n}(x)$ converges in $L^{1}([0,1])$, that the limit function $f(x)$ is absolutely continuous, and that $g(x)=f^{\prime}(x)$ almost everywhere.
(4) Let (X, \mathcal{M}, μ) be a measure space. Let A_{n} be measurable sets with $\mu\left(A_{n}\right)<\infty$ and $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$. Let $1<q<\infty$. Define

$$
g_{n}=\left[\mu\left(A_{n}\right)\right]^{-1 / q} \chi_{A_{n}}
$$

Define p by $1 / p+1 / q=1$. Prove that for $f \in L^{p}(X, \mathcal{M}, \mu)$

$$
\lim _{n \rightarrow \infty} \int f g_{n} d \mu=0
$$

(5) Let $f \in L^{2}([-1,1])$ such that $\int_{-1}^{1} f(x) g(x) d x=0$ for all continuous functions $g(x)$ such that

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{1} x g(x) d x=0
$$

Prove there are real constants a, b such that $f(x)=a x+b$ a.e.
(6) Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on it. Suppose that

$$
\sum_{n=0}^{\infty} \int|f|^{n} d \mu<\infty
$$

(a) Prove that $|f(x)|<1$ a.e.
(b) Prove that $[1-f(x)]^{-1}$ is integrable with respect to μ.

