Analysis qualifying exam - January 2014

In problems 1, 2, 3 and 5, the measure for $L^p([a, b])$ is Lebesgue measure, and the integrals are with respect to Lebesgue measure.

(1) Let $f \in L^1([0,1])$. For $x \in (0,1)$ define

$$h(x) = \int_{x}^{1} \frac{f(t)}{t} dt$$

Prove that $h \in L^1([0,1])$ and

$$\int_{0}^{1} h(x) \, dx = \int_{0}^{1} f(x) \, dx$$

(2) Let E_n be a sequence of Lebesque measurable sets in [0, 1], and let k be a real number, $0 \le k \le 1$. Suppose that

$$\lim_{n \to \infty} m(E_n \cap [0, a]) = ka$$

for every $a, 0 \le a \le 1$; here m is the Lebesgue measure. Prove that

$$\lim_{n \to \infty} \int_{E_n} f(x) \, dx = k \int_{[0,1]} f(x) \, dx$$

for every function $f(x) \in L^1([0,1])$.

(3) Let $f_n(x)$ be a sequence of absolutely continuous functions on [0, 1] with $f_n(0) = 0$. Suppose that $f'_n(x)$ converges to g(x) in $L^1([0, 1])$. Prove that $f_n(x)$ converges in $L^1([0, 1])$, that the limit function f(x) is absolutely continuous, and that g(x) = f'(x) almost everywhere.

(4) Let (X, \mathcal{M}, μ) be a measure space. Let A_n be measurable sets with $\mu(A_n) < \infty$ and $\lim_{n \to \infty} \mu(A_n) = 0$. Let $1 < q < \infty$. Define

$$g_n = [\mu(A_n)]^{-1/q} \chi_{A_n}$$

Define p by 1/p + 1/q = 1. Prove that for $f \in L^p(X, \mathcal{M}, \mu)$

$$\lim_{n \to \infty} \int f g_n d\mu = 0$$

(5) Let $f \in L^2([-1,1])$ such that $\int_{-1}^1 f(x)g(x) dx = 0$ for all continuous functions g(x) such that

$$\int_{-1}^{1} g(x) \, dx = \int_{-1}^{1} x g(x) \, dx = 0$$

Prove there are real constants a, b such that f(x) = ax + b a.e.

(6) Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on it. Suppose that

$$\sum_{n=0}^{\infty} \int |f|^n \, d\mu < \infty$$

- (a) Prove that |f(x)| < 1 a.e.
- (b) Prove that $[1 f(x)]^{-1}$ is integrable with respect to μ .