Analysis Qualifying Exam

PLEASE SHOW ALL YOUR WORK

- 1. Let (X, ρ) be a metric space, $E \subset X$, and $f(x) = \inf_{y \in E} \rho(x, y)$. Show that f is continuous on X, and that $\overline{E} = \{x \in X : f(x) = 0\}$.
- 2. Suppose $f : [0,\infty) \to \mathbb{R}$ is a Lebesgue integrable function with compact support. Define the Laplace transform of f by

$$F(t) = \int_0^\infty f(x)e^{-tx}dx.$$

Show that F is continuously differentiable on $(0, \infty)$.

3. Justify the statement that

$$\int_0^1 \int_0^1 \frac{(x-y)\sin(xy)}{x^2+y^2} dx dy = \int_0^1 \int_0^1 \frac{(x-y)\sin(xy)}{x^2+y^2} dy dx.$$

4. Let $\{f_n\}_{n \ge 1}$ be a sequence of functions in $L^p(\mathbb{R}, \mu)$ where $1 and <math>\mu$ is a Borel measure on \mathbb{R} . Suppose that

$$\sup_{n\geq 1}\|f_n\|_p<\infty.$$

Show that $\{f_n\}_{n\geq 1}$ is 'uniformly integrable', that is, for all $\epsilon > 0$ there is a $\delta > 0$ such that when $\mu(E) < \delta$, we have

$$\sup_{n\geq 1}\int_E |f_n|d\mu<\epsilon.$$

5. Let μ and ν be finite non-zero positive measures on the measure space (X, M) such that $\nu \ll \mu \ll \nu$. Let $\frac{d\nu}{d(\mu+\nu)}$ represent the Radon-Nikodym derivative of ν with respect to $\mu + \nu$. Show the following strict inequality:

$$0 < \frac{d\nu}{d(\mu + \nu)} < 1$$
 a.e. with respect to μ .

6. For p > 1, let $f, g \in L^p(\mathbb{R})$. Suppose that T(f) = T(g) for all bounded linear functionals T on $L^p(\mathbb{R})$. Show that f = g in $L^p(\mathbb{R})$.