ANALYSIS QUALIFYING EXAM

JANUARY 2018

Please show all of your work. GOOD LUCK!

- (1) A real-valued function f on [a, b] is said to be locally bounded if for every $x \in [a, b]$ there is a $\delta > 0$ such that f(x) is bounded on $(x - \delta, x + \delta) \cap [a, b]$. Prove that if f is locally bounded on [a, b] then f is bounded on [a, b].
- (2) i) Prove the following estimate:

$$\int_{1}^{\infty} \frac{\sqrt[3]{1+x}}{x^2} \, dx \le \sqrt[3]{6} \, .$$

ii) Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) = 1$. Let f and g be measurable functions on X that are positive μ -a.e.. Suppose that $1 \leq f(x)g(x)$ for μ -a.e. $x \in X$. Prove that

$$1 \le \int_X f \, d\mu \cdot \int_X g \, d\mu$$

(3) Let $\{f_n\}_{n\geq 1}$ be a sequence of measurable, real-valued functions on [0,1].

i) Suppose there exists positive numbers C and ϵ for which

$$\int_0^1 f_n(x)^2 \, dx \le C n^{2-\epsilon} \quad \text{for all } n \ge 1.$$

Show that $g_n = \frac{f_n}{n}$ converges to zero in measure.

ii) Suppose $f_n = \chi_{E_n}$ with $E_n \subset [0, 1]$ for all $n \ge 1$. Show that if f_n converges to f in L^1 , then f is also the characteristic function of a measurable set.

(4) Let
$$f \in L^1([0,1])$$
 with $f \notin L^2([0,1])$. Consider the following:

$$\lim_{n \to \infty} \int_0^1 n \ln\left(1 + \frac{|f(x)|^2}{n^2}\right) dx$$

Determine whether or not this limit exists. If it exists, calculate it. If it does not, explain.

(5) Let (X, \mathcal{M}, μ) be a σ -finite measure space. Let f be a non-negative, measurable function on X. Define a function on $[0, \infty)$ by

$$F(t) = \mu(\{x : f(x) > t\})$$

Prove that for all $\alpha \geq 0$, $t^{\alpha}F(t)$ is integrable with respect to Lebesgue measure on $[0, \infty)$ if and only if $f \in L^{1+\alpha}(X, \mu)$. Hint: express F(t) as an integral.

(6) For non-negative integers k, define

$$S_k = \{ f \in L^2([0,1]) : \int_0^1 f(x) \exp(2\pi i n x) \, dx = 0, \, if \, |n| \le k \}$$

Let P_k be the orthogonal projection onto the closed subspace S_k . Prove or disprove each of the following statements: i) $||P_k|| \to 0$ as $k \to \infty$.

ii) $\forall f \in L^2([0,1])$, we have $||P_k f|| \to 0$ as $k \to \infty$.