Geometry-Topology Qualifying Exam

Fall 2014

Problem 1

For $p(z)$ a polynomial of degree n with its zeros lying within distance R from the origin compute

$$
\int_{|z|=R} \frac{p^{\prime}(z)}{p(z)} d z .
$$

Be sure to justify your calculation and cite the theorems you are using.

Problem 2

a) For a vector field V and a differential form ω on a manifold M the Lie derivative of ω along V is defined by

$$
\mathcal{L}_{V} \omega:=\iota_{V} d \omega+d\left(\iota_{V} \omega\right)
$$

Prove that it is a derivation acting on the ring of differential forms, i.e. that for any pair of differential forms, a p-form η and a q-form τ, we have

$$
\mathcal{L}_{V}(\eta \wedge \tau)=\mathcal{L}_{V}(\eta) \wedge \tau+\eta \wedge \mathcal{L}_{V}(\tau)
$$

Note: You can make use of the basic properties of exterior derivative and interior and exterior product, once you state them.
b) For the vector field $V=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$ and the one-form $\omega=x^{2} d y+y^{2} d x$ on \mathbb{R}^{2} compute the Lie derivative $\mathcal{L}_{V} \omega$.

Problem 3

a) Prove that the group $S L(2, \mathbb{R})$ of all 2×2 real matrices of determinant one,

$$
S L(2, \mathbb{R}):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1 ; a, b, c, d \in \mathbb{R}\right\}
$$

is a three-dimensional manifold.
b) Give an example of three global vector fields on $S L(2, \mathbb{R})$ that form a basis for the tangent space at the point $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in S L(2, \mathbb{R})$.

Problem 4

Let ω be a closed two-form on a compact connected orientable manifold $M^{2 n}$ (without a boundary) of dimension $2 n$. Assume that ω is a nowhere degenerate form, i.e. for any point p and any bases $e_{1}, e_{2}, \ldots, e_{2 n}$ in the tangent space $T_{p} M^{2 n}$ the expression

$$
\sum_{i_{1} i_{2} \ldots i_{2 n}} \epsilon^{i_{1}, i_{2}, \ldots, i_{2 n}} \omega\left(e_{i_{1}}, e_{i_{2}}\right) \omega\left(e_{i_{3}}, e_{i_{4}}\right) \ldots \omega\left(e_{i_{2 n-1}}, e_{i_{2 n}}\right) \neq 0
$$

Here $\epsilon^{i_{1}, i_{2}, \ldots, i_{2 n}}$ is a completely antisymmetric tensor with $\epsilon^{1,2, \ldots, 2 n}=1$; in other words, $\epsilon^{i_{1}, i_{2}, \ldots, i_{2 n}}$ is the sign of the permutation $\left(i_{1}, i_{2}, \ldots, i_{2 n}\right)$.

Show that the n-th exterior power

$$
\omega \wedge \omega \wedge \ldots \wedge \omega
$$

generates the top de Rham cohomology group $H_{d R}^{2 n}\left(M^{2 n}\right)$.

Problem 5

The space X is obtained by attaching a Möbius strip along its boundary to one of the meridians of a two-torus (marked γ in the picture below). Find the fundamental group of X for some choice of a base point.

Figure 1: A torus with a marked meridian.

Problem 6

Consider a surface obtained by identifying edges of a square as indicated in Figure 2.

Figure 2: The CW complex of the surface.
a) Directly compute the cellular homology of this space.
b) Give this space a Δ-complex structure and use it to compute its simplicial homology.
c) Let point p be at the center of the above square and D a small open two-disk centered at p. Compute the homology of the surface via the Mayer-Vietoris sequence, using D and the complement of p as the two open sets.

