Geometry-Topology Qualifying Exam

Fall 2015

Problem 1

Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{\sin ^{2} 3 \phi}{5-4 \cos 2 \phi} d \phi
$$

Hint: You might want to use the substitution $z=e^{i \phi}$.

Problem 2

(a) Show that

$$
M:=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3}: x^{2}+x y+y^{2}+x z+z^{3}=1\right\}
$$

is an embedded submanifold of \mathbb{R}^{3}.
(b) Compute the tangent space to M at $p=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ as a subspace of \mathbb{R}^{3}.
(c) For the function

$$
\begin{align*}
f: M & \rightarrow \mathbb{R} \tag{1}\\
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) & \mapsto z \tag{2}
\end{align*}
$$

find the direction (tangent to M) of greatest increase at the same point p as in part (b).

Problem 3

Let X and Y be two vector fields and f and g two smooth functions. Prove that

$$
[f X, g Y]=f g[X, Y]-g Y(f) X+f X(g) Y
$$

where $[\cdot, \cdot]$ denotes the Lie bracket of vector fields.

Problem 4

The space Y is obtained by removing a small disk from a two-torus and identifying the boundary of the resulting space with a torus meridian, see Figure 1. Find the fundamental group $\pi_{1}(Y)$ (at a basepoint of your choice).

Figure 1: Punctured torus with meridian (top, in blue) and deleted disk (shaded, with boundary in red).

Problem 5

Let X be a connected sum of the Klein bottle and a real projective space, i.e.

- let K^{\prime} denote the Klein bottle with a small open disk removed, and let f : $\partial K^{\prime} \rightarrow S^{1}$ be a homeomorphism of the boundary of K^{\prime} with the circle;
- let P^{\prime} denote the real projective plane with a small open disk removed, and let $g: \partial P^{\prime} \rightarrow S^{1}$ be a homeomorphism;
- then X is obtained by identifying the boundary of K^{\prime} with that of P^{\prime} :

$$
X=K^{\prime} \coprod P^{\prime} / \sim,
$$

where $x \sim y$ if $x \in \partial K^{\prime}, y \in \partial P^{\prime}$ and $f(x)=g(y)$, and X has the quotient topology.
a) Compute the homology groups of X with integer coefficients.
b) Infer the cohomology groups of X with integer coefficients (or compute them directly).

