Geometry/Topology Qualifying Exam

August 2017

Please show all your work. GOOD LUCK!

Problem 1

Evaluate

$$
\int_{0}^{\infty} \frac{d x}{1+x^{6}}
$$

Problem 2

Consider the function $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ given by

$$
F(x, y, z, w)=\left(x^{2}-y^{2}, w z\right)
$$

a) Show that $M=F^{-1}(1,1)$ is a manifold and compute its dimension.
b) Give a basis for the tangent space of M (viewed as a subspace of \mathbb{R}^{4}) at $(1,0,1,1)$.
c) Let $S=F^{-1}(0,0)$. Describe all points $(x, y, z, w) \in S$ for which the Implicit Function Theorem or Regular Value Theorem can be used to show (x, y, z, w) has a neighborhood in S diffeomorphic to an open set in Euclidean space.

Problem 3

Consider the following vector fields and forms on \mathbb{R}^{n} :

$$
\begin{gathered}
X=\sum_{j=1}^{n} x^{j} \frac{\partial}{\partial x^{j}} \\
\omega=d x^{1} \wedge \cdots \wedge d x^{n} \\
\theta=\sum_{j=1}^{n}(-1)^{j+1} x^{j} d x^{1} \wedge \cdots \wedge \widehat{d x^{j}} \wedge \cdots \wedge d x^{n}
\end{gathered}
$$

where the hat means that term is missing. Find the following:
a) $d \theta$, where d is the exterior derivative.
b) The Lie derivative $L_{X} \omega$.
c) The Lie derivative $L_{X} \theta$.

Problem 4

Let S^{n} be a sphere of dimension n.
a) Prove that for odd-dimensional spheres, the identity mapping $S^{2 n+1} \rightarrow S^{2 n+1}$ is homotopic to the antipodal map $a(x)=-x$.
Hint: You may realize $S^{2 n+1}$ as

$$
\left\{\left(z_{1}, \ldots, z_{n+1}\right) \in \mathbb{C}^{n+1}:\left|z_{1}\right|^{2}+\cdots\left|z_{n+1}\right|^{2}=1\right\} .
$$

b) Show that for every n, the map induced on the singular homology groups $H_{k}\left(S^{n}\right)$ by the antipodal map (for each k) is an isomorphism.

Problem 5

The space X_{n} is obtained from $S^{n} \times[0,1]$ by identifying points $(x, 1), x \in S^{n}$, with $(-x, 0)$. Here $-x$ is the antipodal point to x. For $n>1$, find $\pi_{1}\left(X_{n}\right)$.

Problem 6

Let M be a compact, orientable manifold without boundary of dimension n. Prove that $H_{D R}^{n}(M) \neq 0$. Here $H_{D R}$ are De Rham cohomology groups.

