Geometry/Topology Qualifying Exam

August 2017

Please show all your work. GOOD LUCK!

Problem 1

Evaluate

$$\int_0^\infty \frac{dx}{1+x^6}$$

Problem 2

Consider the function $F : \mathbb{R}^4 \to \mathbb{R}^2$ given by

$$F(x, y, z, w) = (x^2 - y^2, wz).$$

a) Show that $M = F^{-1}(1, 1)$ is a manifold and compute its dimension. b) Give a basis for the tangent space of M (viewed as a subspace of \mathbb{R}^4) at (1, 0, 1, 1).

c) Let $S = F^{-1}(0,0)$. Describe all points $(x, y, z, w) \in S$ for which the Implicit Function Theorem or Regular Value Theorem can be used to show (x, y, z, w)has a neighborhood in S diffeomorphic to an open set in Euclidean space.

Problem 3

Consider the following vector fields and forms on \mathbb{R}^n :

$$X = \sum_{j=1}^{n} x^{j} \frac{\partial}{\partial x^{j}},$$
$$\omega = dx^{1} \wedge \dots \wedge dx^{n},$$
$$\theta = \sum_{j=1}^{n} (-1)^{j+1} x^{j} dx^{1} \wedge \dots \wedge \widehat{dx^{j}} \wedge \dots \wedge dx^{n},$$

where the hat means that term is missing. Find the following: a) $d\theta$, where d is the exterior derivative.

- b) The Lie derivative $L_X \omega$.
- c) The Lie derivative $L_X \theta$.

Problem 4

Let S^n be a sphere of dimension n.

a) Prove that for odd-dimensional spheres, the identity mapping $S^{2n+1} \to S^{2n+1}$ is homotopic to the antipodal map a(x) = -x. *Hint:* You may realize S^{2n+1} as

$$\{(z_1,\ldots,z_{n+1})\in\mathbb{C}^{n+1}:|z_1|^2+\cdots|z_{n+1}|^2=1\}.$$

b) Show that for every n, the map induced on the singular homology groups $H_k(S^n)$ by the antipodal map (for each k) is an isomorphism.

Problem 5

The space X_n is obtained from $S^n \times [0,1]$ by identifying points $(x,1), x \in S^n$, with (-x,0). Here -x is the antipodal point to x. For n > 1, find $\pi_1(X_n)$.

Problem 6

Let M be a compact, orientable manifold without boundary of dimension n. Prove that $H^n_{DR}(M) \neq 0$. Here H_{DR} are De Rham cohomology groups.