Geometry/Topology Qualifying Exam, Fall 2018

1) Let f be a holomorphic function f on \mathbb{C} . Let $L(z) = \frac{f'(z)}{f(z)}$. a) Describe the singularities of the function L(z). Hint: Recall that f has a zero of order $k \in \mathbb{N}$ at z_0 if and only if there exists a holomorphic function g on \mathbb{C} such that $f(z) = (z - z_0)^k g(z)$, where $g(z_0) \neq 0$.

b) Calculate the residue of L(z) at each of its singular points.

c) Prove that for a closed curve C enclosing a simply connected bounded domain $R \subseteq \mathbb{C}$,

$$\int_{C} \frac{f'\left(z\right)}{f\left(z\right)} dz = 2\pi i N$$

where N is the number number of zeroes (with multiplicity) of f in the region R.

2) Let M and N be a smooth manifolds of dimension m and n, respectively.

a) Give a definition of the tangent bundle TM and the cotangent bundle T^*M . (Note: you do not need to show these are vector bundles, but you do need to define what vectors and covectors are.)

b) For a smooth map $f: M \to N$, give the definitions of the induced maps $f_*: TM \to TN$ and $f^*: T^*N \to T^*M.$

c) Explain why f_* is not a map from smooth vector fields on M to smooth vector fields on N, but f^* is a map from smooth covector fields (or 1-forms) on N to smooth covector fields on M.

3) Recall the stereographic projection mapping $\phi : S^2 \setminus \{N\} \to \mathbb{R}^2$, where $S^2 \subseteq \mathbb{R}^3$ is the unit 2sphere with north pole N = (0, 0, 1), given by $\phi(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$ with inverse given by $\psi(X, Y) = \psi(X, Y)$

 $\left(\frac{2X}{X^2+Y^2+1}, \frac{2Y}{X^2+Y^2+1}, \frac{X^2+Y^2-1}{X^2+Y^2+1}\right)$ a) Consider the 2-form

$$\omega = \frac{e^{-\left(X^2 + Y^2\right)}}{1 + X^2 + Y^2} dX \wedge dY$$

on \mathbb{R}^2 . Show $\phi^* \omega$ extends to a smooth (global) 2-form Ω on S^2 that is zero at exactly one point.

b) Show that any smooth 2-form on S^2 that is zero at exactly one point generates the de Rham cohomology group $H_{dR}^{2}(S^{2})$. (Note: you may use your knowledge of this group.)

- 4) Consider the mapping $P : \mathbb{C} \to \mathbb{C}$ given by $P(z) = z(z-2) = z^2 2z$.
- a) Show that P restricted to $\mathbb{C} \setminus \{1\}$ is a two-sheeted covering map from $\mathbb{C} \setminus \{1\}$ to $\mathbb{C} \setminus \{-1\}$.

b) Give explicit generators of π_1 ($\mathbb{C} \setminus \{1\}, 0$) and π_1 ($\mathbb{C} \setminus \{-1\}, 0$) and use these to calculate $P_*\pi_1$ ($\mathbb{C} \setminus \{1\}, 0$). c) Show that f(z) = 2 - z generates the group of deck transformations.

5) Let S^1 be the unit circle and let D^2 be the closed unit disk in \mathbb{R}^2 whose boundary is S^1 . For each of the following spaces $X \subseteq Y$, determine whether there is a retraction $r: Y \to X$ and give a short justification: a) Let $X = S^1$ and let $Y = D^2 \setminus \{(0,0)\}$, the closed unit disk in \mathbb{R}^2 with the origin removed.

- b) Let $X = S^1$ and let $Y = D^2$.

c) Let Y be the solid torus $S^1 \times D^2$ and let $X = S^1 \times \{(0,0)\}$. d) Let Y be the solid torus $S^1 \times D^2$ and let $X = \{(1,0)\} \times S^1$ where S^1 is the boundary of the disk D^2 .

6) Suppose M and N are connected topological manifolds (not necessarily the same dimension). Recall the wedge product $M \vee N$ which is the disjoint union of M and N with one point in M identified with one point in N. Use the Mayer-Vietoris sequence to show that the $H_k(M \vee N) \cong H_k(M) \oplus H_k(N)$ if $k \neq 0$. Be sure to justify any claims about maps in the sequence. What happens at k = 0?