GEOMETRY/TOPOLOGY QUALIFYING EXAM

AUGUST 2023

Please show all of your work. GOOD LUCK!

(1) Find a conformal mapping from the first quadrant \(\{ z = x + iy \in \mathbb{C} : x > 0, y > 0 \} \) to the disk \(\{ z : |z| < 1 \} \).

(2) Let the mapping \(F : \mathbb{R}^4 \to \mathbb{R}^2 \) be given by the formulas \(F(x^1, x^2, x^3, x^4) = (x^1 x^2 x^3 x^4, x^1 + x^2 + x^3 + x^4) \).
 a) Prove that \(F^{-1}(1, 1) \) is a smooth submanifold of \(\mathbb{R}^4 \). What is its dimension?
 b) Find all values of \(a \) and \(b \) for which the implicit function theorem guarantees that \(F^{-1}(a, b) \) is a smooth submanifold of \(\mathbb{R}^4 \).

(3) Let \(X = S^2 / \sim \) where \(S^2 = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1 \} \), and the equivalence relation is \((1, 0, 0) \sim (-1, 0, 0) ; (0, 1, 0) \sim (0, -1, 0) \). Find \(\pi_1(X) \) and \(H_2(X) \).

(4) Let \(X(x^1, x^2, x^3, x^4) = x^2 \frac{\partial}{\partial x^1} - x^1 \frac{\partial}{\partial x^2} + x^4 \frac{\partial}{\partial x^3} - x^3 \frac{\partial}{\partial x^4} \) be a vector field in \(\mathbb{R}^4 \).
 a) Show that \(X \) is tangent to the sphere \(S^3 = \{ x \in \mathbb{R}^4 : |x|^2 = 1 \} \).
 b) Let \(\phi(t) \) be the one-parameter group of diffeomorphisms of \(S^3 \) that is generated by \(X \). Compute the diffeomorphism \(\phi(\pi) \).

(5) Let \(\omega \) be a closed two-form on the four-dimensional sphere \(S^4 \).
 a) Prove that the form \(\omega \wedge \omega \) is exact.
 b) Compute \(\int_{S^4} \omega \wedge \omega \).

(6) Let \(E = \{ (z_1, z_2) \in \mathbb{C}^2 : z_1 z_2 = 1 \} \).
Define a mapping \(\pi : E \to \mathbb{C}^* = \mathbb{C} \setminus \{0\} \)
by the formula \(\pi(z_1, z_2) = \frac{z_1}{z_2} \).
Prove that \(\pi \) is a covering and find its group of deck transformations.