Geometry-Topology Qualifying Exam Spring 2015

Problem 1

Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{a-\cos \theta}
$$

if $a>1$ is a constant. Hint: Use $z=e^{i \theta}$ substitution.

Problem 2 Find all critical points and all critical values of the function

$$
\begin{aligned}
& F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2} \\
&\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right) \mapsto\binom{x^{3}+y^{3}+z^{3}+t^{3}}{x y z t}
\end{aligned}
$$

For which of the following values $c \in \mathbb{R}^{2}$ is the level set $F^{-1}(c)$ a regular submanifold?
(i) $c=\binom{1}{1}$,
(ii) $c=\binom{4}{0}$,
(iii) $c=\binom{0}{0}$.

Why?

Problem 3

For any smooth one-form ω and any pair of smooth vector fields X and Y

$$
d \omega(X, Y)=X \omega(Y)-Y \omega(X)-\omega([X, Y])
$$

Generalize this formula for any smooth two-form, i.e. complete the following equality:

$$
d \omega(X, Y, Z)=\ldots
$$

Prove your general formula.
Note: You can either use the local expression for the exterior derivative or its definition as an antiderivation of degree 1 (acting on the graded algebra $\Omega^{*}(M)$) satisfying $d^{2}=0$, such that for any smooth function f and any smooth vector field X

$$
d f(X)=X f
$$

Problem 4

Let p and q be two distinct points on a two-torus T^{2}. Compute the fundamental group $\pi_{1}\left(X, x_{0}\right)$ of the space

$$
X=T^{2} /(p \sim q)
$$

obtained from the two-torus T^{2} by identifying these two points p and q.

Problem 5

Consider

1. a two-torus $T^{2}=S^{1} \times S^{1}$ with a cycle $\beta=S^{1} \times p$ and a cycle $\gamma=q \times S^{1}$, and 2. an annulus $D=\left\{x \in \mathbb{R}^{2}|1 \leq|x| \leq 2\}\right.$. The boundary of the annulus is $\partial A=a-b$ consists of two circles $a=\left\{x \in \mathbb{R}^{2}| | x \mid=2\right\}$ and $b=\left\{x \in \mathbb{R}^{2}| | x \mid=1\right\}$.

The space Y is obtained by identifying a with β and also identifying $b \cdot b$ (which is the concatenation of b with itself) with γ :

$$
Y=T^{2} \sqcup D /\{a \sim \beta, b \cdot b \sim \gamma\}
$$

Compute the singular homology groups of Y.

Figure 1: A torus and a disk.

Problem 6

Prove that any pointed map

$$
\Phi:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right),
$$

induces a homomorphism of the fundamental groups

$$
\Phi_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)
$$

Compute Φ_{*} for the inclusion map $\Phi: S^{1} \times S^{1} \rightarrow S^{1} \times D^{2}$, with the second factor $S^{1}=\partial D^{2}$.

