Geometry-Topology Qualifying Exam

Spring 2015

Problem 1

Evaluate the integral

$$\int_0^{2\pi} \frac{d\theta}{a - \cos\theta},$$

if a > 1 is a constant. Hint: Use $z = e^{i\theta}$ substitution.

Problem 2 Find all critical points and all critical values of the function

$$F: \mathbb{R}^4 \to \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \mapsto \begin{pmatrix} x^3 + y^3 + z^3 + t^3 \\ xyzt \end{pmatrix}.$$

For which of the following values $c \in \mathbb{R}^2$ is the level set $F^{-1}(c)$ a regular submanifold?

(i)
$$c = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, (ii) $c = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$, (iii) $c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Why?

Problem 3

For any smooth one-form ω and any pair of smooth vector fields X and Y

 $d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y]).$

Generalize this formula for any smooth two-form, i.e. complete the following equality:

$$d\omega(X,Y,Z) = \dots$$

Prove your general formula.

Note: You can either use the local expression for the exterior derivative or its definition as an antiderivation of degree 1 (acting on the graded algebra $\Omega^*(M)$) satisfying $d^2 = 0$, such that for any smooth function f and any smooth vector field X

$$df(X) = Xf.$$

Problem 4

Let p and q be two distinct points on a two-torus T^2 . Compute the fundamental group $\pi_1(X, x_0)$ of the space

$$X = T^2 / (p \sim q)$$

obtained from the two-torus T^2 by identifying these two points p and q.

Problem 5

Consider

1. a two-torus $T^2 = S^1 \times S^1$ with a cycle $\beta = S^1 \times p$ and a cycle $\gamma = q \times S^1$, and 2. an annulus $D = \{x \in \mathbb{R}^2 | 1 \le |x| \le 2\}$. The boundary of the annulus is $\partial A = a - b$ consists of two circles $a = \{x \in \mathbb{R}^2 | |x| = 2\}$ and $b = \{x \in \mathbb{R}^2 | |x| = 1\}$.

The space Y is obtained by identifying a with β and also identifying $b \cdot b$ (which is the concatenation of b with itself) with γ :

$$Y = T^2 \sqcup D / \{ a \sim \beta, b \cdot b \sim \gamma \}.$$

Compute the singular homology groups of Y.

Figure 1: A torus and a disk.

Problem 6

Prove that any pointed map

$$\Phi: (X, x_0) \to (Y, y_0),$$

induces a homomorphism of the fundamental groups

$$\Phi_*: \pi_1(X, x_0) \to \pi_1(Y, y_0).$$

Compute Φ_* for the inclusion map $\Phi: S^1 \times S^1 \to S^1 \times D^2$, with the second factor $S^1 = \partial D^2$.