Geometry-Topology Qualifying Exam January 2020

Problem 1

Use contour integration to evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-4 \sin \theta}
$$

Problem 2

Let x^{1}, x^{2}, x^{3} be Cartesian coordinates on a Euclidean three-dimensional space $M=\mathbb{R}^{3}$ and let $\mathcal{X}(M)$ denote the space of smooth vector field on it. For any vector field X define one- and two-forms ω_{X}^{1} and ω_{X}^{2} by

$$
\omega_{X}^{1}(Y)=(X, Y), \quad \omega_{X}^{2}(Y, Z)=(X, Y, Z)
$$

Here (X, Y) is the dot product of X and Y, and (X, Y, Z) is the triple product of X, Y, and Z (which equals to the determinant of the matrix with columns X, Y, and $Z)$.

Consider operations curl : $\mathcal{X}(M) \rightarrow \mathcal{X}(M)$, and div : $\mathcal{X}(M) \rightarrow C^{\infty}(M)$ defined by the formulas

$$
d \omega_{Y}^{1}=\omega_{\text {curl } Y}^{2}, \quad d \omega_{Z}^{2}=(\operatorname{div} Z) d x^{1} \wedge d x^{2} \wedge d x^{3}
$$

a) Demonstrate that the exterior product of one-forms corresponds to the cross product of vector fields, by proving $\omega_{X}^{1} \wedge \omega_{Y}^{1}=\omega_{X \times Y}^{2}$.
b) Demonstrate that the exterior product of a one-form and a two-form corresponds to the dot product of vector fields: $\omega_{X}^{1} \wedge \omega_{Y}^{2}=(X, Y) d x^{1} \wedge d x^{2} \wedge d x^{3}$.
c) Express the following relation in terms of differential forms:

$$
\operatorname{div}(X \times Y)=(\operatorname{curl} X, Y)-(\operatorname{curl} Y, X) .
$$

d) Prove this relation using its differential form presentation.

Problem 3

Consider the following map

$$
\begin{aligned}
& F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
& \left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \mapsto\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{c}
x(x-y+z)-y z \\
x^{2}+y^{2}-2 x y \\
y-z
\end{array}\right) .
\end{aligned}
$$

Let $C=\left\{(u, v, w) \in \mathbb{R}^{3} \mid u^{2}+v^{2}=1, w=0\right\}$ denote a unit circle in \mathbb{R}^{3}.
Is its preimage $F^{-1}(C)$ of C a regular submanifold?
If it is, what is its dimension? If it is not, why not?

Problem 4

Compute the fundamental group of \mathbb{R}^{3} with two lines removed. To receive full credit, you should consider different cases.

Problem 5

Let $\pi: S^{2} \rightarrow \mathbb{R} \mathbb{P}^{2}$ be the natural projection, sending a point $(x, y, z) \in S^{2}$ to the point $(x: y: z)$ in $\mathbb{R P}^{2}$. Show that the map π does not admit a continuous right inverse, i.e. there exists no continuous map $\phi: \mathbb{R}^{2} \rightarrow S^{2}$ such that $\pi \circ \phi=$ id.

Problem 6

Let M be an n-dimensional manifold, and let $\phi: M \rightarrow M$ be a continuous map such that the induced map $\phi_{*}: H_{n}(M, \mathbb{Z}) \rightarrow H_{n}(M, \mathbb{Z})$ is given by $\phi_{*}(\xi)=-\xi$. Define the space X as the quotient of $M \times[0,1]$ by the following equivalence relation: $(x, 0) \sim(\phi(x), 1)$.

1. Let $\pi: M \times[0,1] \rightarrow X$ be the quotient map. Define the set A as an open neighborhood of $X_{1}=\pi(M \times[0,1 / 2])$ which deformation retracts to X_{1}. Similarly, let B be an open neighborhood of $X_{2}=\pi(M \times[1 / 2,1])$ which deformation retracts to X_{2}. Describe the map

$$
H_{n}(A \cap B, \mathbb{Z}) \rightarrow H_{n}(A, \mathbb{Z}) \oplus H_{n}(B, \mathbb{Z})
$$

in the Mayer-Vietoris sequence for the decomposition $X=A \cup B$.
2. Hence show that $H_{n+1}(X, \mathbb{Z})=0$.

