Geometry-Topology Qualifying Exam January 2020

Problem 1

Use contour integration to evaluate the integral

$$\int_0^{2\pi} \frac{d\theta}{5 - 4\sin\theta}.$$

Problem 2

Let x^1, x^2, x^3 be Cartesian coordinates on a Euclidean three-dimensional space $M = \mathbb{R}^3$ and let $\mathcal{X}(M)$ denote the space of smooth vector field on it. For any vector field X define one- and two-forms ω_X^1 and ω_X^2 by

$$\omega_X^1(Y) = (X, Y), \qquad \qquad \omega_X^2(Y, Z) = (X, Y, Z).$$

Here (X, Y) is the dot product of X and Y, and (X, Y, Z) is the triple product of X, Y, and Z (which equals to the determinant of the matrix with columns X, Y, and Z).

Consider operations $curl : \mathcal{X}(M) \to \mathcal{X}(M)$, and $div : \mathcal{X}(M) \to C^{\infty}(M)$ defined by the formulas

$$d\omega_Y^1 = \omega_{curl\,Y}^2, \qquad \qquad d\omega_Z^2 = (div\,Z)dx^1 \wedge dx^2 \wedge dx^3.$$

a) Demonstrate that the exterior product of one-forms corresponds to the cross product of vector fields, by proving $\omega_X^1 \wedge \omega_Y^1 = \omega_{X \times Y}^2$. b) Demonstrate that the exterior product of a one-form and a two-form corre-

b) Demonstrate that the exterior product of a one-form and a two-form corresponds to the dot product of vector fields: $\omega_X^1 \wedge \omega_Y^2 = (X, Y) dx^1 \wedge dx^2 \wedge dx^3$.

c) Express the following relation in terms of differential forms:

$$div(X \times Y) = (curl X, Y) - (curl Y, X).$$

d) Prove this relation using its differential form presentation.

Problem 3

Consider the following map

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} x(x-y+z) - yz \\ x^2 + y^2 - 2xy \\ y - z \end{pmatrix}.$$

Let $C = \{(u, v, w) \in \mathbb{R}^3 | u^2 + v^2 = 1, w = 0\}$ denote a unit circle in \mathbb{R}^3 . Is its preimage $F^{-1}(C)$ of C a regular submanifold?

If it is, what is its dimension? If it is not, why not?

Problem 4

Compute the fundamental group of \mathbb{R}^3 with two lines removed. To receive full credit, you should consider different cases.

Problem 5

Let $\pi: S^2 \to \mathbb{RP}^2$ be the natural projection, sending a point $(x, y, z) \in S^2$ to the point (x: y: z) in \mathbb{RP}^2 . Show that the map π does not admit a continuous right inverse, i.e. there exists no continuous map $\phi: \mathbb{RP}^2 \to S^2$ such that $\pi \circ \phi = \text{id}$.

Problem 6

Let M be an *n*-dimensional manifold, and let $\phi: M \to M$ be a continuous map such that the induced map $\phi_*: H_n(M, \mathbb{Z}) \to H_n(M, \mathbb{Z})$ is given by $\phi_*(\xi) = -\xi$. Define the space X as the quotient of $M \times [0, 1]$ by the following equivalence relation: $(x, 0) \sim (\phi(x), 1)$.

1. Let $\pi: M \times [0,1] \to X$ be the quotient map. Define the set A as an open neighborhood of $X_1 = \pi(M \times [0,1/2])$ which deformation retracts to X_1 . Similarly, let B be an open neighborhood of $X_2 = \pi(M \times [1/2,1])$ which deformation retracts to X_2 . Describe the map

$$H_n(A \cap B, \mathbb{Z}) \to H_n(A, \mathbb{Z}) \oplus H_n(B, \mathbb{Z})$$

in the Mayer-Vietoris sequence for the decomposition $X = A \cup B$.

2. Hence show that $H_{n+1}(X,\mathbb{Z}) = 0$.