Geometry/Topology Qualifying Exam August 2019

1. Compute the following integral via the residue theorem.

$$\int_0^\infty \frac{dx}{(1+x^2)^2}.$$

- 2. Let S^2 be the unit sphere in \mathbb{R}^3 oriented by outward normal, and let ω be the restriction of the form $dx \wedge dy$ to S^2 . Let also $N \subset S^2$ be the northern hemisphere.
 - (a) Find the integral $\int_N \omega$.
 - (b) Is the form ω exact on S^2 ?

Remark: The orientation of S^2 by outward normal is defined as follows. A basis (v, w) in the tangent space $T_p S^2$ is positively oriented if the basis (n, v, w) of \mathbb{R}^3 is positively oriented. Here n is the outward normal to S^2 at p.

- 3. Consider the group O(3) of orthogonal 3×3 matrices as a submanifold of the 9-dimensional space of all matrices. Consider the mapping O(3) $\rightarrow \mathbb{R}^3$ which associates to every matrix $A \in O(3)$ its matrix elements a_{12}, a_{13}, a_{23} . Prove that this mapping is a local diffeomorphism near the identity element.
- 4. Consider the space X obtained from a square $[0,1] \times [0,1]$ by identifying its sides as shown in the figure:

Let γ be the class of the dashed path in $\pi_1(X, x_0)$. Show that $\gamma \neq id$, but $\gamma^2 = id$. Here id is the identity element in $\pi_1(X, x_0)$.

- 5. Let X be a solid torus, i.e. a compact region in \mathbb{R}^3 bounded by a torus. Consider the space Y obtained from two copies X_1, X_2 of X by identifying their boundaries via the map $(\phi, \psi) \mapsto (\psi, \phi)$, where ϕ and ψ are 2π -periodic coordinates on the torus. Let \tilde{X}_1 and \tilde{X}_2 be open sets in Y which deformation retract to X_1 and X_2 , respectively.
 - (a) Write down the Mayer-Vietoris sequence of reduced homology groups for the decomposition $Y = \tilde{X}_1 \cup \tilde{X}_2$.
 - (b) Compute the homology groups $H_3(Y)$ and $H_0(Y)$ (with integer coefficients).
 - (c) Describe explicitly the map $H_1(\tilde{X}_1 \cap \tilde{X}_2) \to H_1(\tilde{X}_1) \oplus H_1(\tilde{X}_2)$ in the above Mayer-Vietoris sequence, and show that it is an isomorphism.
 - (d) Hence prove that the homology groups $H_1(Y)$ and $H_2(Y)$ are trivial.
- 6. Let X be a topological space, and let $Y \subset X$ be a retract of X (which means that there exists a retraction $r: X \to Y$). Let also k be a positive integer.
 - (a) Show that $H_k(X) = 0$ implies $H_k(Y) = 0$.
 - (b) Does $H_k(Y) = 0$ imply $H_k(X) = 0$? Prove your statement.