ANALYSIS QUALIFYING EXAM AUGUST, 2025

PLEASE SHOW ALL YOUR WORK

GOOD LUCK!

Problem 1

Find

$$\lim_{n \to \infty} n \int_0^\infty \ln(1+x)e^{-nx^2} dx.$$

Justify all steps.

Problem 2

Let $u_n(x)$ be a sequence of continuous functions on the real line that converges to a function u(x) uniformly. Prove that the sequence of functions $\arctan(u_n(x))$ converges to $\arctan(u(x))$ uniformly.

Problem 3

Let u(x) be a solution to the differential equation

$$u'' = (\sin x)u^2$$

on the interval [0,1], such that u'(0) = 0. Prove that

$$\int_0^1 |u'(x)|^2 dx \le \frac{1}{12} \int_0^1 |u(x)|^4 dx.$$

Problem 4

Let (X, \mathfrak{M}, μ) be a finite measure space, and let f(x) be a measurable real-valued function on X. Let

$$\alpha(t) = \mu(\{x : f(x) > t\}).$$

Prove that

$$\int_X \arctan(f(x)) d\mu = \int_{-\infty}^\infty \frac{\alpha(t)}{1+t^2} dt - \frac{\pi}{2} \mu(X).$$

Hint. Consider the set $\{(x,t) \subset X \times \mathbb{R} : f(x) > t\}$.

Problem 5

Prove that the function the function $f(x) = x^{\alpha} \sin x$ is not of bounded variation on the interval $(0, \infty)$ for all real values of α .

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}\mathrm{T}_{E}X$

Problem 6

Let $e_k = (0, \dots, 0, 1, 0, \dots)$, with 1 sitting in the kth place. Let

$$x_n = \frac{e_1 + \dots + e_n}{\sqrt{n}}.$$

- a) Prove that the sequence x_n converges weakly to 0 in l^2 . b) Does it converge weakly in l^1 ? Prove your answer.