GEOMETRY-TOPOLOGY QUALIFYING EXAM, F2025

- 1. Suppose that f(z) is a 1-1 complex analytic function in an open neighborhood of z=0 with f(0)=0. Show that $\frac{f(z)}{z}$ has a removable singularity at z=0 and is non-zero near z=0.
- 2. Show that there does NOT exist a 1-form ω on \mathbb{R}^n such that for any (smooth) curve $c:[0,1]\to\mathbb{R}^n$ $\int_c\omega$ is the arclength of c.
- 3. Let (r, θ) denote polar coordinates for the plane \mathbb{R}^2 , where the coordinate neighborhood is \mathbb{R}^2 minus the nonnegative x-axis.
- (a) Compute the form $d\theta$ in terms of the Euclidean coordinates (x, y), and use this to explain why $d\theta$ extends to a smooth one form on $\mathbb{R} \setminus \{0\}$.
- (b) Compute the integrals $\int_C d\theta$ for the oriented curves C in figure 1 (see attached sheet).
 - (c) Explain why $d\theta$ is not exact in all of $\mathbb{R}^2 \setminus \{0\}$.
 - 4. Suppose that M is a smooth n-manifold. Prove that for $1 \le p \le n$,

$$H_{DR}^p(M,\mathbb{R}) \times H_p(M,\mathbb{R}) \to \mathbb{R} : ([\omega],[c]) \to \int_c \omega$$

is a well-defined bilinear map. Here, $[\omega]$ is a class of closed forms in the de Rham cohomology space $H^p_{DR}(M,\mathbb{R})$, and [c] is a class of cycles in the homology space $H_p(M,\mathbb{R})$.

- 5. (a) Compute the fundamental group (at a basepoint which you can choose) of the triangle with three sides identified as in figure 2.
- (b) Explain why the fundamental group, up to isomorphism, does not depend on your choice of basepoint.
- 6. For each of the following statements, either briefly explain why the statement is true, or give a counterexample.
- (a) Every exact k-form on a compact orientable k-dimensional manifold vanishes at some point.
- (b) Suppose that $f: X \to Y$ is a smooth mapping of manifolds. If f is 1-1 and onto, then f is a diffeomorphism.
- (c) If the degree of a smooth map $f:S^2\to S^2$ is nonzero, then the map f is onto.

Figure 1

Figure 2

