

ANALYSIS QUALIFYING EXAM
JANUARY, 2026

PLEASE SHOW ALL YOUR WORK

GOOD LUCK!

PROBLEM 1

Find

$$\lim_{n \rightarrow \infty} \sqrt{n} \int_0^1 e^{-nx^2} \cos x dx.$$

Justify all steps.

PROBLEM 2

Let $u_n(x)$ be a sequence of uniformly continuous functions on the real line that converges to a function $u(x)$ uniformly. Prove that the function $u(x)$ is uniformly continuous.

PROBLEM 3

Let $f(x)$ be an absolutely continuous, real valued function on the interval $[0, 1]$. Suppose that

$$\int_0^1 f(x) dx = 0.$$

Prove that

$$\int_0^1 |f(x)|^3 dx \leq \frac{1}{3} \int_0^1 |f'(x)|^3 dx.$$

PROBLEM 4

Let (X, \mathfrak{M}, μ) be a finite measure space, and let $f(x)$ be a measurable real-valued function on X . Prove that the function

$$g(x, t) = \frac{\sin(tf(x))}{1 + t^2}$$

is integrable on $X \times \mathbb{R}$, with the product measure $\mu \times m$, where m is the Lebesgue measure on \mathbb{R} . Evaluate the integral

$$\int_{X \times \mathbb{R}} g(x, t) d(\mu \times m).$$

PROBLEM 5

Let $f(x)$ be an absolutely continuous function on \mathbb{R} . Prove that the function $\sin(f(x))$ is also absolutely continuous.

PROBLEM 6

Let A be a bounded operator in a Hilbert space H , and let $x \in H$. Suppose that $\|A\| < 1$ and $(A^n x, x) = 0$ for every positive, integer number n . Prove that

$$((I - A)^{-1}x, x) = \|x\|^2.$$