An Introduction to Trimmed Serendipity Finite Element Spaces
Andrew Gillette - University of Arizona

joint work with
Tyler Kloefkorn, AAAS STP Fellow, hosted at NSF
Table of Contents

1. Four well-known families of finite elements
2. Trimmed serendipity spaces: a new, smaller family of elements
3. A computational basis for trimmed serendipity spaces
Outline

1. Four well-known families of finite elements
2. Trimmed serendipity spaces: a new, smaller family of elements
3. A computational basis for trimmed serendipity spaces
Classification of conforming methods

Conforming finite element method types can be broadly classified by three integers:

\[n \rightarrow \text{the spatial dimension of the domain} \]
\[r \rightarrow \text{the order of error decay} \]
\[k \rightarrow \text{the differential form order of the solution space} \]

An element type is defined in part by its degrees of freedom. Typically:

the more degrees of freedom, the greater the computational cost of the method

Ex: \(Q_1^- \Lambda^2(\Box_3) \) is an element for

\[n = 3 \quad \rightarrow \quad \text{domains in } \mathbb{R}^3 \]
\[r = 1 \quad \rightarrow \quad \text{linear order of error decay} \]
\[k = 2 \quad \rightarrow \quad \text{conformity in } \Lambda^2(\mathbb{R}^3) \sim H(\text{div}) \]

\(Q_1^- \Lambda^2(\Box_3) \) is part of the \(Q^- \) ‘column’ of elements,

is defined on geometry \(\Box_3 \) (i.e. a cube),

has a 6 dimensional space of test functions,

and has an associated set of 6 degrees of freedom

that are unisolvent for the test function space.
The ‘Periodic Table of the Finite Elements’

Classification of many common conforming finite element types.

\(n \rightarrow \) Domains in \(\mathbb{R}^2 \) (top half) and in \(\mathbb{R}^3 \) (bottom half)

\(r \rightarrow \) Order 1, 2, 3 of error decay (going down columns)

\(k \rightarrow \) Conformity type \(k = 0, \ldots, n \) (going across a row)

Geometry types: Simplices (left half) and cubes (right half).
Raviart, Thomas, “A mixed finite element method for 2nd order elliptic problems” Lecture Notes in Mathematics, 1977 ← 3172 citations, including 150 from 2017!

Nédélec, “Mixed finite elements in \(\mathbb{R}^3 \),” Numerische Mathematik, 1980

Nédélec, “A new family of mixed finite elements in \(\mathbb{R}^3 \),” Numerische Mathematik, 1986

Arnold, Awano “Finite element differential forms on cubical meshes”, Math Comp., 2013

Stable pairs of elements for mixed methods

Picking elements from the table for a mixed method for the Poisson problem:

Unstable method

\[\begin{align*}
\mathbf{P}_1 \subset \mathcal{H}^1 \times \mathcal{H}^1 & \subset \mathcal{L}^2 \\
2 & \Rightarrow \\
\text{Unstable method}
\end{align*} \]

Provably stable method

\[\begin{align*}
\mathbf{RT}_{1}^{0/1} \subset \mathcal{H}(\text{div}) \subset \mathcal{L}^2 \\
3 & \Rightarrow \\
\text{Provably stable method} & \text{converges to} \\
u = x(1 - x)y(1 - y)
\end{align*} \]

Example and images on right from:

Provably stable method converges to
\[u = x(1 - x)y(1 - y) \]

Stable pairs of elements for mixed Hodge-Laplacian problems are found by choosing consecutive spaces in compatible discretizations of the \(L^2 \) deRham Diagram.

\[
\begin{array}{c}
H^1 \xrightarrow{\text{grad}} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^2 \\
\text{vector Poisson} & \sigma & \mu \\
\text{Maxwell’s eqn’s} & h & b \\
\text{Darcy / Poisson} & u & p
\end{array}
\]

The Periodic Table of Finite Elements lets us ‘read off’ stable pairs visually.
Stable pairs for tetrahedral meshes

Problem: Darcy / Poisson
Dimension: $n = 3$
Mesh type: tetrahedral
Convergence: quadratic ($r = 2$)
Stable pairs for tetrahedral meshes

Problem: Darcy / Poisson

Dimension: $n = 3$

Mesh type: tetrahedral

Convergence: cubic ($r = 3$)
Stable pairs for tetrahedral meshes

Problem: Maxwell’s
Dimension: \(n = 3 \)
Mesh type: tetrahedral
Convergence: quadratic (\(r = 2 \))
Stable pairs for tetrahedral meshes

Problem: Maxwell’s
Dimension: $n = 3$
Mesh type: tetrahedral
Convergence: cubic ($r = 3$)
Stable pairs for tetrahedral meshes

Problem: vector Poisson

Dimension: $n = 3$

Mesh type: tetrahedral

Convergence: quadratic ($r = 2$)
Problem: vector Poisson
Dimension: $n = 3$
Mesh type: tetrahedral
Convergence: cubic ($r = 3$)
Stable pairs for cubical meshes

Problem: Darcy / Poisson
Dimension: $n = 3$
Mesh type: cubes
Convergence: quadratic ($r = 2$)
Problem: Darcy / Poisson
Dimension: $n = 3$
Mesh type: cubes
Convergence: cubic ($r = 3$)
Problem: Maxwell’s
Dimension: $n = 3$
Mesh type: cubes
Convergence: quadratic ($r = 2$)
Stable pairs for cubical meshes

Problem: Maxwell’s
Dimension: $n = 3$
Mesh type: cubes
Convergence: cubic ($r = 3$)
Problem: vector Poisson
Dimension: $n = 3$
Mesh type: cubes
Convergence: quadratic ($r = 2$)
Problem: vector Poisson
Dimension: \(n = 3 \)
Mesh type: cubes
Convergence: cubic (\(r = 3 \))
Exact cochain complexes found in the table

On an n-simplex in \mathbb{R}^n:

- Trimmed polynomials:
 \[\mathcal{P}_r^{-} \Lambda^0 \to \mathcal{P}_r^{-} \Lambda^1 \to \cdots \to \mathcal{P}_r^{-} \Lambda^{n-1} \to \mathcal{P}_r^{-} \Lambda^n \]

- Polynomials:
 \[\mathcal{P}_r \Lambda^0 \to \mathcal{P}_{r-1} \Lambda^1 \to \cdots \to \mathcal{P}_{r-n+1} \Lambda^{n-1} \to \mathcal{P}_{r-n} \Lambda^n \]

On an n-dimensional cube in \mathbb{R}^n:

- Tensor product:
 \[\mathcal{Q}_r^{-} \Lambda^0 \to \mathcal{Q}_r^{-} \Lambda^1 \to \cdots \to \mathcal{Q}_r^{-} \Lambda^{n-1} \to \mathcal{Q}_r^{-} \Lambda^n \]

- Serendipity:
 \[\mathcal{S}_r \Lambda^0 \to \mathcal{S}_{r-1} \Lambda^1 \to \cdots \to \mathcal{S}_{r-n+1} \Lambda^{n-1} \to \mathcal{S}_{r-n} \Lambda^n \]

The ‘minus’ spaces proceed across rows of the PToFE (r is fixed) while the ‘regular’ spaces proceed along diagonals (r decreases).

Mysteriously, the degree of freedom count for mixed methods from the \mathcal{P}_r^- spaces is smaller than those from the \mathcal{P}_r spaces, while the opposite is true for the \mathcal{Q}_r^- and \mathcal{S}_r spaces.
Outline

1. Four well-known families of finite elements
2. Trimmed serendipity spaces: a new, smaller family of elements
3. A computational basis for trimmed serendipity spaces
The 5th column: Trimmed serendipity spaces

A new column for the PToFE: the **trimmed serendipity** elements.

\[S_r^{-} \Lambda^k(\square_n) \]

denotes approximation order \(r \),
subset of \(k \)-form space \(\Lambda^k(\Omega) \),
use on meshes of \(n \)-dim'l cubes.

Defined for any \(n \geq 1, 0 \leq k \leq n, r \geq 1 \)

Identical or analogous properties to all the other columns in the table.

The advantage of the \(S_r^{-} \Lambda^k \) spaces is that they have fewer degrees of freedom for mixed methods than their tensor product and serendipity counterparts.
Key properties of the trimmed serendipity spaces

\[Q_r^{-} \Lambda^0 \rightarrow Q_r^{-} \Lambda^1 \rightarrow \cdots \rightarrow Q_r^{-} \Lambda^{n-1} \rightarrow Q_r^{-} \Lambda^n \] \hspace{1cm} \text{tensor product} \\
\[S_r \Lambda^0 \rightarrow S_{r-1} \Lambda^1 \rightarrow \cdots \rightarrow S_{r-n+1} \Lambda^{n-1} \rightarrow S_{r-n} \Lambda^n \] \hspace{1cm} \text{serendipity} \\
\[S_r^{-} \Lambda^0 \rightarrow S_r^{-} \Lambda^1 \rightarrow \cdots \rightarrow S_r^{-} \Lambda^{n-1} \rightarrow S_r^{-} \Lambda^n \] \hspace{1cm} \text{trimmed serendipity}

\textbf{Subcomplex:} \hspace{0.5cm} dS_r^{-} \Lambda^k \subset S_r^{-} \Lambda^{k+1}

\textbf{Exactness:} \hspace{0.5cm} The above sequence is \textit{exact}. \hspace{0.5cm} i.e. the image of incoming map = kernel of outgoing map

\textbf{Inclusion:} \hspace{0.5cm} S_r \Lambda^k \subset S_{r+1}^{-} \Lambda^k \subset S_{r+1} \Lambda^k

\textbf{Trace:} \hspace{0.5cm} \text{tr}_f S_r^{-} \Lambda^k (\mathbb{R}^n) \subset S_r^{-} \Lambda^k (f), \hspace{0.5cm} \text{for any} \hspace{0.5cm} (n-1)-\text{hyperplane} \hspace{0.5cm} f \hspace{0.5cm} \text{in} \hspace{0.5cm} \mathbb{R}^n

\textbf{Special cases:} \hspace{0.5cm} S_r^{-} \Lambda^0 = S_r \Lambda^0 \hspace{0.5cm} S_r^{-} \Lambda^n = S_{r-1} \Lambda^n \hspace{0.5cm} S_r^{-} \Lambda^k + dS_{r+1} \Lambda^{k-1} = S_r \Lambda^k.

Replace ‘S’ by ‘P’ \(\rightarrow \) key properties about the first two columns for \(P_r^{-} \Lambda^k \) and \(P_r \Lambda^k \)!
Dimension count and comparison

Formula for counting degrees of freedom of $S_r^- \wedge^k (\Box_n)$:

$$\min\{n, \lfloor r/2 \rfloor + k\} \sum_{d=k}^{2n-d} \binom{n}{d} \left(\binom{r-d+2k-1}{r-d+k-1} \binom{d-k}{k} + \binom{r-d+2k}{d-k-1} \right)$$

<table>
<thead>
<tr>
<th></th>
<th>r=1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=2</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>17</td>
<td>26</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>n=3</td>
<td>0</td>
<td>8</td>
<td>20</td>
<td>32</td>
<td>50</td>
<td>74</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
<td>36</td>
<td>66</td>
<td>111</td>
<td>173</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>21</td>
<td>45</td>
<td>82</td>
<td>135</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>56</td>
</tr>
<tr>
<td>n=4</td>
<td>0</td>
<td>16</td>
<td>48</td>
<td>80</td>
<td>136</td>
<td>216</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>32</td>
<td>112</td>
<td>216</td>
<td>392</td>
<td>656</td>
<td>1036</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24</td>
<td>96</td>
<td>216</td>
<td>422</td>
<td>746</td>
<td>1227</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>36</td>
<td>94</td>
<td>200</td>
<td>375</td>
<td>644</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>35</td>
<td>70</td>
<td>126</td>
</tr>
</tbody>
</table>
Mixed Method dimension comparison 1

Mixed method for Darcy problem:

\[\mathbf{u} + K \nabla p = 0 \]
\[\text{div } \mathbf{u} - f = 0 \]

We compare degree of freedom counts among the three families for use on meshes of affinely-mapped squares or cubes, when a conforming method with (at least) order \(r \) decay in the approximation of \(p, \mathbf{u}, \text{ and div } \mathbf{u} \) is desired.

Total # of degrees of freedom on a square (\(n = 2 \)):

| \(r \) | \(|Q_r^{-} \Lambda^1| + |Q_r^{-} \Lambda^2| \) | \(|S_r \Lambda^1| + |S_{r-1} \Lambda^2| \) | \(|S_r^{-} \Lambda^1| + |S_r^{-} \Lambda^2| \) |
|---|---|---|---|
| 1 | 4+1 = 5 | 8+1 = 9 | 4+1 = 5 |
| 2 | 12+4 = 16 | 14+3 = 17 | 10+3 = 13 |
| 3 | 24+9 = 33 | 22+6 = 28 | 17+6 = 23 |

Total # of degrees of freedom on a cube (\(n = 3 \)):

| \(r \) | \(|Q_r^{-} \Lambda^2| + |Q_r^{-} \Lambda^3| \) | \(|S_r \Lambda^2| + |S_{r-1} \Lambda^3| \) | \(|S_r^{-} \Lambda^2| + |S_r^{-} \Lambda^3| \) |
|---|---|---|---|
| 1 | 6+1 = 7 | 18+1 = 19 | 6+1 = 7 |
| 2 | 36+8 = 44 | 39+4 = 43 | 21+4 = 25 |
| 3 | 108+27 = 135 | 72+10 = 82 | 45+10 = 55 |
Mixed method for Darcy problem: \[u + K \nabla p = 0 \]
\[\text{div } u - f = 0 \]

The number of interior degrees of freedom is reduced from tensor product, to serendipity, to trimmed serendipity:

of interior degrees of freedom on a square \((n = 2)\):

| \(r \) | \(|Q_r^{-1}\Lambda_0^1| + |Q_r^{-2}\Lambda_0^2| \) | \(|S_r\Lambda_0^1| + |S_{r-1}\Lambda_0^2| \) | \(|S_r^{-1}\Lambda_0^1| + |S_r^{-2}\Lambda_0^2| \) |
|-------|---------------------------------|------------------|------------------|
| 1 | 0+1 = 1 | 0+1 = 1 | 0+1 = 1 |
| 2 | 4+4 = 8 | 2+3 = 5 | 2+3 = 5 |
| 3 | 12+9 = 21 | 6+6 = 12 | 5+6 = 11 |

of interior degrees of freedom on a cube \((n = 3)\):

| \(r \) | \(|Q_r^{-2}\Lambda_0^2| + |Q_r^{-3}\Lambda_0^3| \) | \(|S_r\Lambda_0^2| + |S_{r-1}\Lambda_0^3| \) | \(|S_r^{-2}\Lambda_0^2| + |S_r^{-3}\Lambda_0^3| \) |
|-------|---------------------------------|------------------|------------------|
| 1 | 0+1 = 1 | 0+1 = 1 | 0+1 = 1 |
| 2 | 12+8 = 20 | 3+4 = 7 | 3+4 = 7 |
| 3 | 54+27 = 81 | 12+10 = 22 | 9+10 = 19 |
Mixed method for Darcy problem:
\[
\begin{align*}
\mathbf{u} + K \nabla p &= 0 \\
\text{div } \mathbf{u} - f &= 0
\end{align*}
\]

Assuming interior degrees of freedom could be dealt with efficiently (e.g. by static condensation), trimmed serendipity elements still have the fewest DoFs:

of **interface** (edge) degrees of freedom on a square ($n = 2$):

| r | $|Q_r \Lambda^1(\partial \square_2)|$ | $|S_r \Lambda^1(\partial \square_2)|$ | $|S_r^- \Lambda^1(\partial \square_2)|$ |
|-----|----------------------------------|----------------------------------|----------------------------------|
| 1 | 4 | 8 | 4 |
| 2 | 8 | 12 | 8 |
| 3 | 12 | 16 | 12 |

of **interface** (edge+face) degrees of freedom on a cube ($n = 3$):

| r | $|Q_r \Lambda^2(\partial \square_3)|$ | $|S_r \Lambda^2(\partial \square_3)|$ | $|S_r^- \Lambda^2(\partial \square_3)|$ |
|-----|----------------------------------|----------------------------------|----------------------------------|
| 1 | 6 | 18 | 6 |
| 2 | 24 | 36 | 18 |
| 3 | 54 | 60 | 36 |
1. Four well-known families of finite elements

2. Trimmed serendipity spaces: a new, smaller family of elements

3. A computational basis for trimmed serendipity spaces
Decomposition by polynomial subspace

$S_r^{-} \Lambda^k(\square_n)$ is a space of differential k-forms whose coefficients are polynomials in \mathbb{R}^n.

$$S_r^{-} \Lambda^k = P_{r}^{-} \Lambda^k \oplus J_r \Lambda^k \oplus dJ_{r} \Lambda^{k-1}$$

Polynomial coefficients in each summand:

- $P_{r}^{-} \Lambda^k$: anything up to degree $r - 1$ and some degree r
- $J_r \Lambda^k$: certain polynomials whose degree is between $r+1$ and $r+n-k-1$
- $dJ_{r} \Lambda^{k-1}$: certain polynomials whose degree is between r and $r+n-k-2$

The “regular” serendipity space has an analogous decomposition:

$$S_r \Lambda^k = P_{r} \Lambda^k \oplus J_r \Lambda^k \oplus dJ_{r+1} \Lambda^{k-1}$$

This decomposition provides a direct sum into some precise but elaborate subspaces:

$$J_r \Lambda^k(\mathbb{R}^n) := \sum_{l \geq 1} \kappa \mathcal{H}_{r+l-1,l} \Lambda^{k+1}(\mathbb{R}^n),$$

where $\mathcal{H}_{r,l} \Lambda^k(\mathbb{R}^n) := \{ \omega \in \mathcal{H}_{r} \Lambda^k(\mathbb{R}^n) | \text{ldeg } \omega \geq l \}$,

where $\text{ldeg}(x^\alpha dx_\sigma) := \#\{i \in \sigma^* : \alpha_i = 1\}$.
We can also decompose $S_r^{-} \Lambda^k(\square_n)$ by the subspace of “zero trace”:

$$S_r^{-} \Lambda^k = S_r^{-} \Lambda^k_0 \oplus \left(S_r^{-} \Lambda^k_0\right)^\perp$$

We use this decomposition to prove that $S_r^{-} \Lambda^\bullet(\square_n)$ is a **minimal compatible finite element system** containing $\mathcal{P}_{r-1} \Lambda^\bullet(\square_n)$.

A computational basis for $S_r^{-} \Lambda^k_0$ would aid in the construction of bases for $S_r^{-} \Lambda^k$.

Building such a basis is non-trivial. Consider

$$\alpha := (z - 1)(y^2 - 1) \, dx + y(x + 1)(z - 1) \, dy + (x + 1)(y^2 - 1) \, dz$$

$$\beta := (z - 1)(y^2 - 1) \, dx - 2y(x + 1)(z - 1) \, dy + (x + 1)(y^2 - 1) \, dz$$

Both α and β have a natural association to the approximation of y on the edge $\{x = 1, z = -1\}$, and both are elements of $Q_2 \Lambda^1(\square_3)$. But *only* β is in $S_1 \Lambda^1(\square_3)$!
Decompositions shared insight

Why is $\beta \in S_1 \Lambda^1(\square_3)$?

$$\beta = (z - 1)(y^2 - 1) \, dx$$
$$\quad - 2y(x + 1)(z - 1) \, dy$$
$$\quad + (x + 1)(y^2 - 1) \, dz$$

$$= y^2 z \, dx \quad -y^2 \, dx \quad 0 \, dx \quad (-z + 1) \, dx$$
$$-2xyz \, dy \quad +2xy \, dy \quad -2yz \, dy \quad 2y \, dy$$
$$xy^2 \, dz \quad 0 \, dz \quad y^2 \, dz \quad (-x - 1) \, dz$$

basis elements for $dJ_2 \Lambda^0$

$\in \mathcal{P}_1 \Lambda^1$

From the polynomial subspace decompositions:

$\beta \in dJ_2 \Lambda^0 \oplus \mathcal{P}_1 \Lambda^1 \subset S_1 \Lambda^1$

$\beta \in dJ_2 \Lambda^0 \oplus \mathcal{P}_1 \Lambda^1 \subset S_2^- \Lambda^1$

Full report on this approach coming soon!
Acknowledgments

Related Publication

Related talk

Victoria Sanders, University of Arizona
Using Sage to Create Lists of Shape Functions for Trimmed Serendipity and Serendipity Finite Elements
Saturday 3:00 p.m. Room 19

Research Funding

Supported in part by the National Science Foundation grant DMS-1522289.

Slides and Pre-prints

http://math.arizona.edu/~agillette/

Thanks to the organizers for the invitation to speak!