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What’s relevant in molecular modeling?

(bottom image: David Goodsell)
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What’s relevant in neuronal modeling?

(right image: Chandrajit Bajaj)
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What’s relevant in diffusion modeling?
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Mathematics used in biological models

Ω

t
↑

Analysis

PDEs

Geometry

Topology

Combinatorics

A ~x = ~b

Linear algebra

Numerical analysis

Mathematics helps answer distinguish relevant and irrelevant features of a model:

Does the PDE have a unique solution, bounded in some norm?

Does the domain discretization affect the quality of the approximate solution?

Is the solution method optimally efficient? (e.g. Why isn’t my code working?)

Focus of my research in these areas: the Finite Element Method
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The Finite Element Method: 1D

The finite element method is a way to numerically approximate the solution to PDEs.

(Example worked out on board)

Ex: The 1D Laplace equation: find u(x) ∈ U (dim U =∞) s.t.
−u′′(x) = f (x) on [a, b]

u(a) = 0,
u(b) = 0

Weak form: find u(x) ∈ U (dim U =∞) s.t.∫ b

a
u′(x)v ′(x) dx =

∫ b

a
f (x)v(x) dx , ∀v ∈ V (dim V =∞)

Discrete form: find uh(x) ∈ Uh (dim Uh <∞) s.t.∫ b

a
u′h(x)v ′h(x) dx =

∫ b

a
f (x)vh(x) dx , ∀vh ∈ Vh (dim Vh <∞)
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The Finite Element Method: 1D

(Example worked out on board)

Suppose uh(x) can be written as linear combination of Vh elements:
uh(x) =

∑
vi∈Vh

uivi (x)

The discrete form becomes: find coefficients ui ∈ R such that∑
i

∫ b

a
uiv ′i (x)v ′j (x) dx =

∫ b

a
f (x)vj (x) dx , ∀vh ∈ Vh (dim Vh <∞)

Written as a linear system:

[ A ]ji [ u ]i = [ f ]j , ∀vj ∈ Vh

With some functional analysis we can prove: ∃ C > 0, independent of h, s.t.

||u − uh||H1(Ω)︸ ︷︷ ︸
error between cnts

and discrete solution

≤ C h |u|H2(Ω)︸ ︷︷ ︸
bound in terms of

2nd order osc. of u

, ∀u ∈ H2(Ω)︸ ︷︷ ︸
holds for any u with
bounded 2nd derivs.

.

where h = maximum width of elements use in discretization.
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Tensor product finite element methods

Generalizing the 1st order, 1D method
Goal: Efficient, accurate approximation of the solution to a PDE over Ω ⊂ Rn for
arbitrary dimension n and arbitrary rate of convergence r .

Standard O(hr ) tensor product finite element method in Rn:
→ Mesh Ω by n-dimensional cubes of side length h.
→ Set up a linear system involving (r + 1)n degrees of freedom (DoFs) per cube.
→ For unknown continuous solution u and computed discrete approximation uh:

||u − uh||H1(Ω)︸ ︷︷ ︸
approximation error

≤ C hr |u|Hr+1(Ω)︸ ︷︷ ︸
optimal error bound

, ∀u ∈ H r+1(Ω).

Implementation requires a clear characterization of the isomorphisms:

11 21 31 41

2212 32 42

2313 33 43

2414 34 44{
x r y s

0 ≤ r , s ≤ 3

}
←→

{
ψi (x)ψj (y)
1 ≤ i, j ≤ 4

}
←→

monomials ←→ basis functions ←→ domain points
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Cubic Hermite Geometric Decomposition (1D, r=3)

1 2 3 4
{1, x , x2, x3} ←→ {ψ1, ψ2, ψ3, ψ4} ←→

approxim. geometry
monomials ←→ basis functions ←→ domain points

Cubic
Hermite Basis

on [0, 1]


ψ1

ψ2

ψ3

ψ4

 :=


1− 3x2 + 2x3

x − 2x2 + x3

x2 − x3

3x2 − 2x3


0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Approximation: x r =
4∑

i=1

εr,iψi , for r = 0, 1, 2, 3, where [εr,i ] =


1 0 0 1
0 1 −1 1
0 0 −2 1
0 0 −3 1


Geometry: If a(x) is a cubic polynomial then:

a(x) = a(0)︸︷︷︸
value

ψ1 + a′(0)︸ ︷︷ ︸
derivative

ψ2 − a′(1)︸ ︷︷ ︸
derivative

ψ3 + a(1)︸︷︷︸
value

ψ4
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Tensor Product Polynomials

We can use our 1D Hermite functions to make 2D Hermite functions:

× =

ψ1(x) × ψ1(y) = ψ11(x , y)

× =

ψ1(x) × ψ2(y) = ψ12(x , y)
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Cubic Hermite Geometric Decomposition (2D, r=3)

11 21 31 41

2212 32 42

2313 33 43

2414 34 44{
x r y s

0 ≤ r , s ≤ 3

}
←→

{
ψi (x)ψj (y)
1 ≤ i, j ≤ 4

}
←→

monomials ←→ basis functions ←→ domain points

Approximation: x r y s =
4∑

i=1

4∑
j=1

εr,iεs,jψij , for 0 ≤ r , s ≤ 3, εr,i as in 1D.

Geometry:

ψ11 ψ21 ψ22

a(x , y) = a|(0,0)︸ ︷︷ ︸
value

ψ11 + ∂x a|(0,0)︸ ︷︷ ︸
1st deriv.

ψ21 + ∂y a|(0,0)︸ ︷︷ ︸
1st deriv.

ψ12 + ∂x∂y a|(0,0)︸ ︷︷ ︸
2nd deriv.

ψ22 + · · ·
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Cubic Hermite Geometric Decomposition (3D, r=3)

111 211

112 212

113 213

114 214

121

122

123

124

131

132

133

134

141

142

143

144

311

312

313

314

411

412

413

414

411

244 344 444

234 334 444

224 324 444{
x r y sz t

0 ≤ r , s, t ≤ 3

}
←→ ψi (x)ψj (y)ψk (z)

1 ≤ i, j, k ≤ 4 ←→

monomials ←→ basis functions ←→ domain points

Approximation: x r y sz t =
4∑

i=1

4∑
j=1

4∑
k=1

εr,iεs,jεt,kψijk , for 0 ≤ r , s, t ≤ 3, εr,i as in 1D.

Geometry: Contours of level sets of the basis functions:

ψ111 ψ112 ψ212 ψ222
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Tensor Product FEM Summary

O(h) O(h2) O(h3) O(hr ){
x r y s

r , s ≤ 1

} {
x r y s

r , s ≤ 2

} {
x r y s

r , s ≤ 3

} {
x r y s

r , s ≤ r

}

4 9 16 (r + 1)2

{
x r y sz t

r , s, t ≤ 1

} {
x r y sz t

r , s, t ≤ 2

} {
x r y sz t

r , s, t ≤ 3

} {
x r y sz t

r , s, t ≤ r

}

8 27 64 (r + 1)3 ← a lot!
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How many functions are minimally needed?

For unknown continuous solution u and computed discrete approximation uh:

||u − uh||H1(Ω)︸ ︷︷ ︸
approximation error

≤ C hr |u|Hr+1(Ω)︸ ︷︷ ︸
optimal error bound

, ∀u ∈ H r+1(Ω).

The proof of the above estimate relies on two properties of finite elements:

Continuity: Adjacent elements agree on order r polynomials their shared face

−→ ??

Approximation: Basis functions on each element span all degree r monomials

{1, x , y , x2, y2, xy}︸ ︷︷ ︸
required for

O(h2) approximation

−→ ?? ←→ {1, x , y , x2, y2, xy , x2y , xy2, x2y2}︸ ︷︷ ︸
standard polynomials in

O(h2) tensor product method
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Next time...

Characterization of the ‘minimal’ approximation question for any order

Intriguing mathematical difficulties and recent ‘serendipitous’ solutions

Benefits of serendipity solutions to biological modeling

Open research problems for an RTG study

Andrew Gillette - U. Arizona ( )Finite Element Research Problems RTG Talk - Jan 2014 19 / 36



Outline

1 Introduction to the Finite Element Method

2 Tensor product finite element methods

3 The minimal approximation question

4 Serendipity finite element methods

5 RTG Project Ideas

Andrew Gillette - U. Arizona ( )Finite Element Research Problems RTG Talk - Jan 2014 20 / 36



Serendipity Elements
9 16 25 36 49

O(h2) O(h3) O(h4) O(h5) O(h6)

8 12 17 23 30

For r ≥ 4 on squares: O(hr ) tensor product method : r 2 + 2r + 1 dots
O(hr ) serendipity method: 1

2 (r 2 + 3r + 6) dots

||u − uh||H1(Ω)︸ ︷︷ ︸
approximation error

≤ C hr |u|Hr+1(Ω)︸ ︷︷ ︸
optimal error bound

, ∀u ∈ H r+1(Ω).
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Serendipity Elements

O(h2) O(h3) O(h4) O(h5) O(h6)

8 12 17 23 30

→Why r + 1 dots per edge?
Ensures continuity between adjacent elements.

→Why interior dots only for r ≥ 4?
Consider, e.g. p(x , y) := (1 + x)(1− x)(1− y)(1 + y)
Observe p is a degree 4 polynomial but p ≡ 0 on ∂([−1, 1]2).

→ How can we recover tensor product-like structure. . .
. . . without a tensor product structure?
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Mathematical Challenges More Precisely

O(h2) O(h3) O(h4) O(h5) O(h6)

8 12 17 23 30

Goal: Construct basis functions for serendipity elements satisfying the following:

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

Tensor product structure: Write as linear combinations of standard tensor
product functions.

Hierarchical: Generalize to methods on n-cubes for any n ≥ 2, allowing
restrictions to lower-dimensional faces.
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Which monomials do we need?

O(h3)
serendipity
element:

{

total degree at most cubic
(req. for O(h3) approximation)︷ ︸︸ ︷

1, x , y , x2, y2, xy , x3, y3, x2y , xy2 , x3y , xy3, x2y2, x3y2, x2y3, x3y3︸ ︷︷ ︸
at most cubic in each variable

(used in O(h3) tensor product methods)

}

We need an intermediate set of 12 monomials!

The superlinear degree of a polynomial ignores linearly-appearing variables.

Example: sldeg(xy3) = 3, even though deg(xy3) = 4

Definition: sldeg(xe1
1 xe2

2 · · · x
en
n ) :=

(
n∑

i=1

ei

)
−# {ei : ei = 1}

{1, x , y , x2, y2, xy , x3, y3, x2y , xy2, x3y , xy3︸ ︷︷ ︸
superlinear degree at most 3 (dim=12)

, x2y2, x3y2, x2y3, x3y3}

ARNOLD, AWANOU The serendipity family of finite elements, Found. Comp. Math, 2011.
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Superlinear polynomials form a lower set
Given a monomial xα := xα1

1 · · · x
αd
d ,

associate the multi-index of d non-negative integers α = (α1, α2, . . . , αd ) ∈ Nd
0 .

Define the superlinear norm of α as |α|sprlin :=
d∑

j=1
αj≥2

αj ,

so that the superlinear multi indices are Sr =
{
α ∈ Nd

0 : |α|sprlin ≤ r
}
.

Observe that Sr has a partial ordering µ ≤ α means µi ≤ αi .

Thus Sr is a lower set, meaning α ∈ Sr , µ ≤ α =⇒ µ ∈ Sr

We can thus apply the following recent result.

Theorem (Dyn and Floater, 2013)
Fix a lower set L ⊂ Nd

0 and points zα ∈ Rd for all α ∈ L. For any sufficiently smooth
d-variate real function f , there is a unique polynomial p ∈ span{xα : α ∈ L} that
interpolates f at the points zα, with partial derivative interpolation for repeated zα
values.

DYN AND FLOATER Multivariate polynomial interpolation on lower sets, J. Approx. Th., to appear.
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Partitioning and reordering the multi-indices

By a judicious choice of the interpolation points zα = (xi , yj ), we recover the
dimensionality associations of the degrees of freedom of serendipity elements.

The order 5 serendipity
element, with degrees of
freedom color-coded by
dimensionality.

x0 x1 x2 x3 x4 x5
y0

y1

y2

y3

y4

y5

The lower set S5, with
equivalent color coding.

x0 x2 x3 x4 x5 x1
y0

y2

y3

y4

y5

y1

The lower set S5, with
domain points zα
reordered.
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Symmetrizing the multi-indices

By collecting the re-ordered interpolation points zα = (xi , yj ), at midpoints of the
associated face, we recover the dimensionality associations of the degrees of freedom
of serendipity elements.

x0 x2 x3 x4 x5 x1
y0

y2

y3

y4

y5

y1

The lower set S5, with
domain points zα
reordered.

x0 x2, x3, x4, x5 x1
y0

y1

y5

y2,
y3,
y4,

A symmetric reordering, with multiplicity. The
associated interpolant recovers values at dots, three
partial derivatives at edge midpoints, and two partial
derivatives at the face midpoint.
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2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

O(h2) O(h3) O(h4)

O(h5) O(h6) O(h7)
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Tensor product structure

The Dyn-Floater interpolation scheme is expressed in terms of tensor product
interpolation over ‘maximal blocks’ in the set using an inclusion-exclusion formula.

→

+1

+1−1

−1

coefficient

calculator

Put differently, the linear combination is the sum over all blocks
within the lower set with coefficients determined as follows:

→ Place the coefficient calculator at the extremal block corner.
→ Add up all values appearing in the lower set.
→ The coefficient for the block is the value of the sum.

Hence: black dots→ +1; white dots→ -1; others→ 0.
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Tensor product structure

Thus, using our symmetric approach, each maximal block in the lower set becomes a
standard tensor-product interpolant.

x0 x1 x2 x3 x4 x5
y0

y1

y2

y3

y4

y5

→

x0 x2 x3 x4 x5 x1
y0

y2

y3

y4

y5

y1

→

x0 x2, x3, x4, x5 x1
y0

y1

y5

y2,
y3,
y4,
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Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard
tensor product functions.

+ + +

- - - =
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3D elements

Hierarchical: Generalize to methods on n-cubes for any n ≥ 2, allowing restrictions to
lower-dimensional faces.
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3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:

Decomposition into a linear combination of tensor product
interpolants works the same as in 2D, using the 3D coefficient
calculator at left. (Blue→ +1; Orange→ -1).

FLOATER, GILLETTE Nodal basis functions for the serendipity family of
finite elements, in preparation.
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Brief aside: historical quiz

What video game is shown on the right?
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RTG Project ideas

Email me if you’d like a copy of the slides with the project ideas.
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