Research Problems in Finite Element Theory: Analysis, Geometry, and Application

Andrew Gillette

Department of Mathematics University of Arizona

Research Tutorial Group Presentation

Slides and more info at:
http://math.arizona.edu/~agillette/

What's relevant in molecular modeling?

(bottom image: David Goodsell)

What's relevant in neuronal modeling?

(right image: Chandrajit Bajaj)

What's relevant in diffusion modeling?

Mathematics used in biological models

Analysis PDEs

Geometry
Topology
Combinatorics

$$
\mathbb{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}
$$

Linear algebra
Numerical analysis

Mathematics helps answer distinguish relevant and irrelevant features of a model:

- Does the PDE have a unique solution, bounded in some norm?
- Does the domain discretization affect the quality of the approximate solution?
- Is the solution method optimally efficient? (e.g. Why isn't my code working?)

Focus of my research in these areas: the Finite Element Method

Table of Contents

(1) Introduction to the Finite Element Method
(2) Tensor product finite element methods
(3) The minimal approximation question

4 Serendipity finite element methods
(5) RTG Project Ideas

Outline

(1) Introduction to the Finite Element Method
(2) Tensor product finite element methods
(3) The minimal approximation question

4 Serendipity finite element methods
(5) RTG Project Ideas

The Finite Element Method: 1D

The finite element method is a way to numerically approximate the solution to PDEs.
(Example worked out on board)
Ex: The 1D Laplace equation: find $u(x) \in U(\operatorname{dim} U=\infty)$ s.t.

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \quad \text { on }[a, b] \\
u(a)=0 \\
u(b)=0
\end{array}\right.
$$

Weak form: find $u(x) \in U(\operatorname{dim} U=\infty)$ s.t.

$$
\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x=\int_{a}^{b} f(x) v(x) d x, \quad \forall v \in V \quad(\operatorname{dim} V=\infty)
$$

Discrete form: find $u_{h}(x) \in U_{h}\left(\operatorname{dim} U_{h}<\infty\right)$ s.t.

$$
\int_{a}^{b} u_{h}^{\prime}(x) v_{h}^{\prime}(x) d x=\int_{a}^{b} f(x) v_{h}(x) d x, \quad \forall v_{h} \in V_{h} \quad\left(\operatorname{dim} V_{h}<\infty\right)
$$

The Finite Element Method: 1D

(Example worked out on board)
Suppose $u_{h}(x)$ can be written as linear combination of V_{h} elements:

$$
u_{h}(x)=\sum_{v_{i} \in v_{h}} u_{i} v_{i}(x)
$$

The discrete form becomes: find coefficients $u_{i} \in \mathbb{R}$ such that

$$
\sum_{i} \int_{a}^{b} u_{i} v_{i}^{\prime}(x) v_{j}^{\prime}(x) d x=\int_{a}^{b} f(x) v_{j}(x) d x, \quad \forall v_{h} \in V_{h} \quad\left(\operatorname{dim} V_{h}<\infty\right)
$$

Written as a linear system:

$$
[\mathbb{A}]_{j i}[u]_{i}=[f]_{j}, \quad \forall v_{j} \in V_{h}
$$

With some functional analysis we can prove: $\exists C>0$, independent of h, s.t.

$$
\underbrace{\left\|u-u_{h}\right\|_{H^{1}(\Omega)}} \leq \underbrace{C h|u|_{H^{2}(\Omega)}}, \quad \underbrace{\forall u \in H^{2}(\Omega)}
$$

error between cnts and discrete solution
bound in terms of 2nd order osc. of u
holds for any u with bounded 2nd derivs.
where $h=$ maximum width of elements use in discretization.

Outline

(1) Introduction to the Finite Element Method
(2) Tensor product finite element methods
(3) The minimal approximation question

4 Serendipity finite element methods
(5) RTG Project Ideas

Tensor product finite element methods

Generalizing the 1st order, 1D method

Goal: Efficient, accurate approximation of the solution to a PDE over $\Omega \subset \mathbb{R}^{n}$ for arbitrary dimension n and arbitrary rate of convergence r.

Standard $O\left(h^{r}\right)$ tensor product finite element method in \mathbb{R}^{n} :
\rightarrow Mesh Ω by n-dimensional cubes of side length h.
\rightarrow Set up a linear system involving $(r+1)^{n}$ degrees of freedom (DoFs) per cube.
\rightarrow For unknown continuous solution u and computed discrete approximation u_{h} :

$$
\underbrace{\left\|u-u_{h}\right\|_{H^{1}(\Omega)}}_{\text {approximation error }} \leq \underbrace{C h^{r}|u|_{H^{r+1}(\Omega)}}_{\text {optimal error bound }}, \quad \forall u \in H^{r+1}(\Omega) .
$$

Implementation requires a clear characterization of the isomorphisms:

$$
\left\{\begin{array}{c}
x^{r} y^{s} \\
0 \leq r, s \leq 3
\end{array}\right\} \quad \longleftrightarrow \quad\left\{\begin{array}{c}
\psi_{i}(x) \psi_{j}(y) \\
1 \leq i, j \leq 4
\end{array}\right\} \quad \longleftrightarrow
$$

monomials \longleftrightarrow basis functions \longleftrightarrow domain points

Cubic Hermite Geometric Decomposition (1D, r=3)

$\begin{gathered}\text { Cubic } \\ \text { Hermite Basis } \\ \text { on }[0,1]\end{gathered}\left[\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4}\end{array}\right]:=\left[\begin{array}{r}1-3 x^{2}+2 x^{3} \\ x-2 x^{2}+x^{3} \\ x^{2}-x^{3} \\ 3 x^{2}-2 x^{3}\end{array}\right]$

Approximation: $x^{r}=\sum_{i=1}^{4} \varepsilon_{r, i} \psi_{i}$, for $r=0,1,2,3$, where $\left[\varepsilon_{r, i}\right]=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & -3 & 1\end{array}\right)$
Geometry: If $a(x)$ is a cubic polynomial then:

$$
a(x)=\underbrace{a(0)}_{\text {value }} \psi_{1}+\underbrace{a^{\prime}(0)}_{\text {derivative }} \psi_{2}-\underbrace{a^{\prime}(1)}_{\text {derivative }} \psi_{3}+\underbrace{a(1)}_{\text {value }} \psi_{4}
$$

Tensor Product Polynomials

We can use our 1D Hermite functions to make 2D Hermite functions:

Cubic Hermite Geometric Decomposition (2D, $r=3$)

Approximation: $x^{r} y^{s}=\sum_{i=1}^{4} \sum_{j=1}^{4} \varepsilon_{r, i} \varepsilon_{s, j} \psi_{i j}$, for $0 \leq r, s \leq 3, \quad \varepsilon_{r, i}$ as in 1 D .

Geometry:

$$
a(x, y)=\underbrace{\left.a\right|_{(0,0)}}_{\text {value }} \psi_{11}+\underbrace{\left.\partial_{x} a\right|_{(0,0)}}_{\text {1st deriv. }} \psi_{21}+\underbrace{\left.\partial_{y} a\right|_{(0,0)}}_{\text {1st deriv. }} \psi_{12}+\underbrace{\left.\partial_{x} \partial_{y} a\right|_{(0,0)}}_{\text {2nd deriv. }} \psi_{22}+\cdots
$$

Cubic Hermite Geometric Decomposition (3D, r=3)

$$
\begin{array}{ccccc}
\left\{\begin{array}{c}
x^{r} y^{s} z^{t} \\
0 \leq r, s, t \leq 3
\end{array}\right\} & \longleftrightarrow & \begin{array}{c}
\psi_{i}(x) \psi_{j}(y) \psi_{k}(z) \\
1 \leq i, j, k \leq 4
\end{array} & \longleftrightarrow & \begin{array}{c}
1 \\
\text { monomials }
\end{array} \\
& \longleftrightarrow & \text { basis functions } & \longleftrightarrow & \left.\begin{array}{c}
\text { domain points } \\
m i n
\end{array}\right)
\end{array}
$$

Approximation: $x^{r} y^{s} z^{t}=\sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \varepsilon_{r, i} \varepsilon_{s, j} \varepsilon_{t, k} \psi_{j j k}, \quad$ for $0 \leq r, s, t \leq 3, \quad \varepsilon_{r, i}$ as in 1 D .
Geometry: Contours of level sets of the basis functions:

ψ_{111}

Tensor Product FEM Summary

$O(h)$	$O\left(h^{2}\right)$	$O\left(h^{3}\right)$	$O\left(h^{\prime}\right)$	
$\left\{\begin{array}{c}x^{r} y^{s} \\ r, s \leq 1\end{array}\right\}$	$\left\{\begin{array}{c}x^{r} y^{s} \\ r, s \leq 2\end{array}\right\}$	$\left\{\begin{array}{c}x^{r} y^{s} \\ r, s \leq 3\end{array}\right\}$	$\left\{\begin{array}{c}x^{r} y^{s} \\ r, s \leq r\end{array}\right\}$	
\cdots	\cdots	$\cdots \cdot$		
4	9	16	$(r+1)^{2}$	
$\left\{\begin{array}{c}x^{r} y^{s} z^{t} \\ r, s, t \leq 1\end{array}\right\}$	$\left\{\begin{array}{c}x^{r} y^{s} z^{t} \\ r, s, t \leq 2\end{array}\right\} \quad\left\{\begin{array}{c}x^{r} y^{s} z^{t} \\ r, s, t \leq 3\end{array}\right\}$		$\left\{\begin{array}{c}x^{r} y^{s} z^{t} \\ r, s, t \leq r\end{array}\right\}$	
			$(r+1)^{3} \quad \leftarrow$ a lot $!$	
8	27	64		

Outline

(1) Introduction to the Finite Element Method
(2) Tensor product finite element methods
(3) The minimal approximation question

4 Serendipity finite element methods
(5) RTG Project Ideas

How many functions are minimally needed?

For unknown continuous solution u and computed discrete approximation u_{n} :

$$
\underbrace{\left\|u-u_{h}\right\|_{H^{1}(\Omega)}}_{\text {approximation error }} \leq \underbrace{C h^{r}|u|_{H^{r+1}(\Omega)}}_{\text {optimal error bound }}, \quad \forall u \in H^{r+1}(\Omega) .
$$

The proof of the above estimate relies on two properties of finite elements:
Continuity: Adjacent elements agree on order r polynomials their shared face

Approximation: Basis functions on each element span all degree r monomials

$\underbrace{\left\{1, x, y, x^{2}, y^{2}, x y\right\}}_{$| required for |
| :---: |
| $O\left(h^{2}\right) \text { approximation }$ |$} \longrightarrow \underbrace{\{? ~}_{$| standard polynomials in |
| :---: |
| $O\left(h^{2}\right) \text { tensor product method }$ |$} \quad \bullet \quad \longleftrightarrow \quad \underbrace{\left\{1, x, y, x^{2}, y^{2}, x y, x^{2} y, x y^{2}, x^{2} y^{2}\right\}}$

Next time...

- Characterization of the 'minimal' approximation question for any order
- Intriguing mathematical difficulties and recent 'serendipitous' solutions
- Benefits of serendipity solutions to biological modeling
- Open research problems for an RTG study

Outline

(1) Introduction to the Finite Element Method
(2) Tensor product finite element methods
(3) The minimal approximation question

4 Serendipity finite element methods
(5) RTG Project Ideas

Serendipity Elements

8

$O\left(h^{3}\right)$

12

$O\left(h^{4}\right)$

17

For $r \geq 4$ on squares: $\begin{array}{rlll}O\left(h^{r}\right) \text { tensor product method: } \\ O\left(h^{r}\right) \text { serendipity method: } & r^{2}+2 r+1 & \frac{1}{2}\left(r^{2}+3 r+6\right) & \text { dots } \\ & \text { dots }\end{array}$
For $r \geq 4$ on squares: $\begin{array}{rlll}O\left(h^{r}\right) \text { tensor product method: } \\ O\left(h^{r}\right) \text { serendipity method: } & r^{2}+2 r+1 & \frac{1}{2}\left(r^{2}+3 r+6\right) & \text { dots } \\ & \text { dots }\end{array}$

36 49

23

$O\left(h^{6}\right)$

30

$$
\underbrace{\left\|u-u_{h}\right\|_{H^{1}(\Omega)}}_{\text {approximation error }} \leq \underbrace{C h^{r}|u|_{H^{r+1}(\Omega)}}_{\text {optimal error bound }}, \quad \forall u \in H^{r+1}(\Omega)
$$

Serendipity Elements

\rightarrow Why $r+1$ dots per edge?
Ensures continuity between adjacent elements.
\rightarrow Why interior dots only for $r \geq 4$?
Consider, e.g. $p(x, y):=(1+x)(1-x)(1-y)(1+y)$
Observe p is a degree 4 polynomial but $p \equiv 0$ on $\partial\left([-1,1]^{2}\right)$.
\rightarrow How can we recover tensor product-like structure...
... without a tensor product structure?

Mathematical Challenges More Precisely

8

12

17

23
$O\left(h^{6}\right)$

30

Goal: Construct basis functions for serendipity elements satisfying the following:

- Symmetry: Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.
- Tensor product structure: Write as linear combinations of standard tensor product functions.
- Hierarchical: Generalize to methods on n-cubes for any $n \geq 2$, allowing restrictions to lower-dimensional faces.

Which monomials do we need?

$O\left(h^{3}\right)$
serendipity element:

total degree at most cubic (req. for $O\left(h^{3}\right)$ approximation)

$$
\{\underbrace{\}}_{\begin{array}{c}
\text { at most cubic in each variable } \\
\text { (used in } O\left(h^{3}\right) \text { tensor product methods) }
\end{array},<\underbrace{1, x^{3} y, x y^{3}, x^{2} y^{2}, x^{3} y^{2}, x^{2} y^{3}, x^{3} y^{3}}_{1, x, y, x^{2}, y^{2}, x y, x^{3}, y^{3}, x^{2} y, x y^{2}}\}}
$$

We need an intermediate set of 12 monomials!
The superlinear degree of a polynomial ignores linearly-appearing variables.
Example: $\operatorname{sldeg}\left(x y^{3}\right)=3$, even though $\operatorname{deg}\left(x y^{3}\right)=4$
Definition: $\operatorname{sldeg}\left(x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}\right):=\left(\sum_{i=1}^{n} e_{i}\right)-\#\left\{e_{i}: e_{i}=1\right\}$
$\{\underbrace{1, x, y, x^{2}, y^{2}, x y, x^{3}, y^{3}, x^{2} y, x y^{2}, x^{3} y, x y^{3}}, x^{2} y^{2}, x^{3} y^{2}, x^{2} y^{3}, x^{3} y^{3}\}$ superlinear degree at most 3 (dim=12)

Arnold, Awanou The serendipity family of finite elements, Found. Comp. Math, 2011.

Superlinear polynomials form a lower set

Given a monomial $\quad x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}$,
associate the multi-index of d non-negative integers
Define the superlinear norm of α as
so that the superlinear multi indices are
Observe that S_{r} has a partial ordering
Thus S_{r} is a lower set, meaning

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d} .
$$

$$
|\alpha|_{\text {sprlin }}:=\sum_{\substack{j=1 \\ j=1}}^{d} \alpha_{j},
$$

$$
\alpha_{j} \geq 2
$$

$$
S_{r}=\left\{\alpha \in \mathbb{N}_{0}^{d}:|\alpha|_{\text {sprlin }} \leq r\right\} .
$$

$$
\mu \leq \alpha \text { means } \mu_{i} \leq \alpha_{i} .
$$

$$
\alpha \in S_{r}, \mu \leq \alpha \Longrightarrow \mu \in S_{r}
$$

We can thus apply the following recent result.

Theorem (Dyn and Floater, 2013)

Fix a lower set $L \subset \mathbb{N}_{0}^{d}$ and points $z_{\alpha} \in \mathbb{R}^{d}$ for all $\alpha \in L$. For any sufficiently smooth d-variate real function f, there is a unique polynomial $p \in \operatorname{span}\left\{x^{\alpha}: \alpha \in L\right\}$ that interpolates f at the points z_{α}, with partial derivative interpolation for repeated z_{α} values.

Dyn and Floater Multivariate polynomial interpolation on lower sets, J. Approx. Th., to appear.

Partitioning and reordering the multi-indices

By a judicious choice of the interpolation points $z_{\alpha}=\left(x_{i}, y_{j}\right)$, we recover the dimensionality associations of the degrees of freedom of serendipity elements.

The order 5 serendipity element, with degrees of freedom color-coded by dimensionality.

The lower set S_{5}, with equivalent color coding.

The lower set S_{5}, with domain points z_{α} reordered.

Symmetrizing the multi-indices

By collecting the re-ordered interpolation points $z_{\alpha}=\left(x_{i}, y_{j}\right)$, at midpoints of the associated face, we recover the dimensionality associations of the degrees of freedom of serendipity elements.

The lower set S_{5}, with domain points z_{α} reordered.

A symmetric reordering, with multiplicity. The associated interpolant recovers values at dots, three partial derivatives at edge midpoints, and two partial derivatives at the face midpoint.

2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.

Tensor product structure

The Dyn-Floater interpolation scheme is expressed in terms of tensor product interpolation over 'maximal blocks' in the set using an inclusion-exclusion formula.

Put differently, the linear combination is the sum over all blocks within the lower set with coefficients determined as follows:
\rightarrow Place the coefficient calculator at the extremal block corner.
\rightarrow Add up all values appearing in the lower set.
\rightarrow The coefficient for the block is the value of the sum.
Hence: black dots $\rightarrow+1$; white dots $\rightarrow-1$; others $\rightarrow 0$.

Tensor product structure

Thus, using our symmetric approach, each maximal block in the lower set becomes a standard tensor-product interpolant.

Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard tensor product functions.

3D elements

Hierarchical: Generalize to methods on n-cubes for any $n \geq 2$, allowing restrictions to lower-dimensional faces.

3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:

Decomposition into a linear combination of tensor product interpolants works the same as in 2D, using the 3D coefficient calculator at left. (Blue $\rightarrow+1$; Orange $\rightarrow-1$).

FLOATER, GILLETTE Nodal basis functions for the serendipity family of finite elements, in preparation.

Brief aside: historical quiz

What video game is shown on the right?

Outline

(1) Introduction to the Finite Element Method
(2) Tensor product finite element methods
(3) The minimal approximation question

4 Serendipity finite element methods
(5) RTG Project Ideas

RTG Project ideas

Email me if you'd like a copy of the slides with the project ideas.

