Proof of Proposition II.1.3.32

Let (M, d) be a metric space, and assume that it is sequentially compact. Then it is compact, i.e. every open cover has a finite subcover.

The proof in the notes is poorly written. The result is important enough to warrant a careful exposition. Of course there is overlap with the language in the notes.

The argument has four steps. a) M is totally bounded (definition below). b) Total boundedness implies that the topology on M has a countable base. c) This implies that every open cover has a countable subcover. d) Finally, every countable open cover has a finite subcover. The assumption of sequential compactness is used in steps a) and d).
a) Claim: for every $m \in \mathbb{Z}_{>0}$, there is a finite set $Z_{m}=\left\{z_{1}, \ldots, z_{N}\right\}$, (with N depending on m) such that the balls $B\left(z_{j}, 1 / m\right)$ cover M. A metric space with this property is called totally bounded.

Suppose this is not true: for some m, no finite number of balls of radius $1 / m$ covers M. We show by induction that there is a sequence $\left\{z_{j}\right\}$ with the property that $d\left(z_{i}, z_{j}\right) \geq 1 / m$ for all i, j. The claim now follows, because no subsequence of such a sequence can be Cauchy, and hence there can be no convergent subsequence. This contradicts the sequential compactness hypothesis.

Pick a point z_{1}. We are assuming that $B\left(z_{1}, 1 / m\right)$ does not cover M. Now suppose as induction step that we have found points z_{1}, \ldots, z_{k} such that $\cup_{j=1}^{k} B\left(z_{j}, 1 / m\right) \varsubsetneqq M$ and $d\left(z_{i}, z_{j}\right) \geq 1 / m$ for all $i, j=1, \ldots, k$. Choose $z_{k+1} \in M-\cup_{j=1}^{k} B\left(z_{j}, 1 / m\right)$. Then since z_{k+1} does not belong to any $B\left(z_{j}, 1 / m\right)$, we have $d\left(z_{k+1}, z_{j}\right)>1 / m$ for all $j=1, \ldots, k$. Furthermore, since we are assuming that no finite number of $1 / m$ balls covers M, we must have $\cup_{j=1}^{k+1} B\left(z_{j}, 1 / m\right) \varsubsetneqq M$. The sequence with the desired property exists, and the claim is established.
b) Let $Z=\cup_{m} Z_{m}$. Let y_{1}, y_{2}, \ldots denote the points in Z. Let \mathcal{B} be the collection of balls $B_{n m}:=B\left(y_{n}, 1 / m\right)$. Claim: this countable collection is a base for the metric topology.

Pick $x \in M$, and an open U_{x} containing x. There is a ball centered at x that is contained in U_{x}, say $B(x, \eta)$. Now choose m with $1 / m<\eta / 2$, and a $y_{j} \in Z_{m}$ for which $d\left(y_{j}, x\right)<1 / m$. Then $\mathcal{B} \ni B\left(y_{j}, 1 / m\right) \subset B(x, \eta)$. Hence, \mathcal{B} satisfies the first condition for basis. It is easy to show the condition about the intersection of two basis sets, and I leave that to the reader (you).
c) The next step is to show that every open cover has a countable subcover. Let $\left\{O_{\alpha}\right\}$ be an open cover. For every $x \in M$, there is an O_{α} containing x. Call it O_{x}. Since \mathcal{B} is a basis, there is a $B\left(y_{j}, 1 / m\right)$ containing x and contained in O_{x}. Call it B_{x}. Now, $\mathcal{B}^{\prime}:=\left\{B_{x}\right\}$ is an open cover of M, since every x is contained in a set of \mathcal{B}^{\prime}, but since $\mathcal{B}^{\prime} \subset \mathcal{B}$ and \mathcal{B} is countable, the subcollection \mathcal{B}^{\prime} must also be countable. (There may be uncountably many x and O_{x}, but there can be only countably many $B^{\prime} \in \mathcal{B}^{\prime}$; this just means that a set $B\left(y_{j}, 1 / m\right)$ will be the B_{x} for many different x.) To get the countable subcover, note that each $B \in \mathcal{B}^{\prime}$ is contained in at least one O_{x}, by construction. For each of these B, pick one of these O_{x} and call it O_{B}. The collection $\left\{O_{B} \mid B \in \mathcal{B}^{\prime}\right\}$ is a countable subcover.
d) Finally, I show that every countable open cover of M has a finite subcover. Let $\left\{O_{n}\right\}$ be a countable cover that has no finite subcover. Take the first set, O_{1}, call it O_{1}^{\prime}, and pick an $x_{1} \in O_{1}^{\prime}$. Next, there is a set O_{m} such that $O_{m} \varsubsetneqq O_{1}^{\prime}$ (or else $M=O_{1}^{\prime}$, contrary to assumption). Write $O_{2}^{\prime}=O_{m}$. Pick an $x_{2} \in O_{2}^{\prime}-O_{1}^{\prime}$. Assume for induction that we have $O_{1}^{\prime}, \ldots, O_{n}^{\prime}$, and for each $k=2, \ldots, n$ an $x_{k} \in O_{k}^{\prime}-\cup_{j=1}^{k-1} O_{j}^{\prime}$. There is an O_{m}, call it O_{n+1}^{\prime}, such that $O_{n+1}^{\prime}-\cup_{j=1}^{n} O_{j}^{\prime} \neq \emptyset$. Pick an x_{n+1} in this difference set. These sets O_{n}^{\prime} cover M.

In this way, you get a sequence $\left\{x_{n}\right\}$. It is supposed to have a convergent subsequence, $\left\{x_{n_{j}}\right\}$, whose limit x will be contained in one of the sets O_{r}^{\prime}. Hence $x_{n_{j}} \in O_{r}^{\prime}$ for all $j>$ some J. But this is a contradiction, since O_{r}^{\prime} contains only one element, x_{r}, of the sequence $\left\{x_{n}\right\}$.

QED, at long last.

