
Proof of Proposition II.1.3.32

Let (M,d) be a metric space, and assume that it is sequentially compact. Then it is

compact, i.e. every open cover has a finite subcover .

The proof in the notes is poorly written. The result is important enough to warrant

a careful exposition. Of course there is overlap with the language in the notes.

The argument has four steps. a) M is totally bounded (definition below). b) Total

boundedness implies that the topology on M has a countable base. c) This implies

that every open cover has a countable subcover. d) Finally, every countable open

cover has a finite subcover. The assumption of sequential compactness is used in

steps a) and d).

a) Claim: for every m ∈ Z>0, there is a finite set Zm = {z1, . . . , zN}, (with N

depending on m) such that the balls B(zj, 1/m) cover M . A metric space with this

property is called totally bounded .

Suppose this is not true: for some m, no finite number of balls of radius 1/m

covers M . We show by induction that there is a sequence {zj} with the property

that d(zi, zj) ≥ 1/m for all i, j. The claim now follows, because no subsequence of

such a sequence can be Cauchy, and hence there can be no convergent subsequence.

This contradicts the sequential compactness hypothesis.

Pick a point z1. We are assuming that B(z1, 1/m) does not cover M . Now suppose

as induction step that we have found points z1, . . . , zk such that ∪kj=1B(zj, 1/m) $ M

and d(zi, zj) ≥ 1/m for all i, j = 1, . . . , k. Choose zk+1 ∈M −∪kj=1B(zj, 1/m). Then

since zk+1 does not belong to any B(zj, 1/m), we have d(zk+1, zj) > 1/m for all

j = 1, . . . , k. Furthermore, since we are assuming that no finite number of 1/m

balls covers M , we must have ∪k+1
j=1B(zj, 1/m) $ M . The sequence with the desired

property exists, and the claim is established.

b) Let Z = ∪mZm. Let y1, y2, . . . denote the points in Z. Let B be the collection

of balls Bnm := B(yn, 1/m). Claim: this countable collection is a base for the metric

topology.

Pick x ∈ M , and an open Ux containing x. There is a ball centered at x that is

contained in Ux, say B(x, η). Now choose m with 1/m < η/2, and a yj ∈ Zm for

which d(yj, x) < 1/m. Then B 3 B(yj, 1/m) ⊂ B(x, η). Hence, B satisfies the first

condition for basis. It is easy to show the condition about the intersection of two

basis sets, and I leave that to the reader (you).



c) The next step is to show that every open cover has a countable subcover. Let

{Oα} be an open cover. For every x ∈ M , there is an Oα containing x. Call it Ox.

Since B is a basis, there is a B(yj, 1/m) containing x and contained in Ox. Call it

Bx. Now, B′ := {Bx} is an open cover of M , since every x is contained in a set of B′,
but since B′ ⊂ B and B is countable, the subcollection B′ must also be countable.

(There may be uncountably many x and Ox, but there can be only countably many

B′ ∈ B′; this just means that a set B(yj, 1/m) will be the Bx for many different x.)

To get the countable subcover, note that each B ∈ B′ is contained in at least one

Ox, by construction. For each of these B, pick one of these Ox and call it OB. The

collection {OB | B ∈ B′} is a countable subcover.

d) Finally, I show that every countable open cover of M has a finite subcover. Let

{On} be a countable cover that has no finite subcover. Take the first set, O1, call

it O′1, and pick an x1 ∈ O′1. Next, there is a set Om such that Om $ O′1 (or else

M = O′1, contrary to assumption). Write O′2 = Om. Pick an x2 ∈ O′2 − O′1. Assume

for induction that we have O′1, . . . , O
′
n, and for each k = 2, . . . , n an xk ∈ O′k−∪k−1

j=1O
′
j.

There is an Om, call it O′n+1, such that O′n+1 − ∪nj=1O
′
j 6= ∅. Pick an xn+1 in this

difference set. These sets O′n cover M .

In this way, you get a sequence {xn}. It is supposed to have a convergent subse-

quence, {xnj
}, whose limit x will be contained in one of the sets O′r. Hence xnj

∈ O′r
for all j > some J . But this is a contradiction, since O′r contains only one element,

xr, of the sequence {xn}.
QED, at long last.


