
Solutions — Chapter 10

10.1. Linear Iterative Systems.ilin

10.1.1. Suppose u(0) = 1. Find u(1), u(10), and u(20) when (a) u(k+1) = 2u(k),

(b) u(k+1) = − .9u(k), (c) u(k+1) = i u(k), (d) u(k+1) = (1 − 2 i )u(k).
Is the system (i) stable? (ii) asymptotically stable? (iii) unstable?

Solution:
(a) u(1) = 2, u(10) = 1024 and u(20) = 1048576; unstable.

(b) u(1) = −.9, u(10) = .348678 and u(20) = .121577; asymptotically stable.

(c) u(1) = i , u(10) = −1 and u(20) = 1; stable.

(d) u(1) = 1 − 2 i , u(10) = 237 + 3116 i and u(20) = −9653287 + 1476984 i ; unstable.

10.1.2. A bank offers 3.25% interest compounded yearly. Suppose you deposit $100. (a) Set
up a linear iterative equation to represent your bank balance. (b) How much money do
you have after 10 years? (c) What if the interest is compounded monthly?

Solution:
(a) u(k+1) = 1.0325 u(k), u(0) = 100, where u(k) represents the balance after k years.

u(10) = 1.032510 × 100 = 137.69 dollars.
(b) u(k+1) = (1 + .0325/12) u(k) = 1.002708 u(k), u(0) = 100, where u(k) represents the

balance after k months. u(120) = (1 + .0325/12)120 × 100 = 138.34 dollars.

10.1.3. Show that the yearly balances of an account whose interest is compounded monthly
satisfy a linear iterative system. How is the effective yearly interest rate determined from
the original annual interest rate?

Solution: If r is the yearly interest rate, then u(k+1) = (1 + r/12) u(k), where u(k) represents

the balance after k months. Thus, the balance after m years is v(m) = u(12m), and satisfies

v(m+1) = (1 + r/12)12 v(m). Then (1 + r/12)12 = 1 + y where y is the effective annual interest
rate.

10.1.4. Show that, as the time interval of compounding goes to zero, the bank balance after

k years approaches an exponential function erk a, where r is the yearly interest rate and a
the initial balance.

Solution: The balance coming from compounding n times per year is
„

1 +
r

n

«nk
a −→ erk a

by a standard calculus limit, [3].

10.1.5. Let u(t) denote the solution to the linear ordinary differential equation
¦

u = αu, u(0) = a.

Let h > 0 be fixed. Show that the sample values u(k) = u(kh) satisfy a linear iterative
system. What is the coefficient λ? Compare the stability properties of the differential equa-
tion and the corresponding iterative system.

Solution: Since u(t) = aeαt we have u(k+1) = u
“

(k + 1)h
”

= aeα(k+1)h = eαh
“

aeαkh
”

=
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eαh u(k), and so λ = eαh. The stability properties are the same: |α | < 1 for asymptotic stabil-
ity; |α | ≤ 1 for stability, |α | > 1 for an unstable system.

10.1.6. For which values of λ does the scalar iterative system (10.2) have a periodic solution,

meaning that u(k+m) = u(k) for some m?

Solution: The solution u(k) = λk u(0) is periodic of period m if and only if λm = 1, and hence λ

is an mth root of unity. Thus, λ = e2 i kπ/m for k = 0, 1, 2, . . . m − 1. If k and m have a common
factor, then the solution is of smaller period, and so the solutions of period exactly m are when
k is relatively prime to m and λ is a primitive mth root of unity, as defined in Exercise 5.7.7.

♠ 10.1.7. Investigate the solutions of the linear iterative equation when λ is a complex number
with |λ | = 1, and look for patterns. You can take the initial condition a = 1 for simplicity

and just plot the phase (argument) θ(k) of the solution u(k) = e i θ(k)

.

Solution: If θ is a rational multiple of π, the solution is periodic, as in Exercise 10.1.6. When
θ/π is irrational, the iterates eventually fill up (i.e., are dense in) the unit circle. More?

10.1.8. Consider the iterative systems u(k+1) = λ u(k) and v(k+1) = µ v(k), where |λ | > |µ |.
Prove that, for any nonzero initial data u(0) = a 6= 0, v(0) = b 6= 0, the solution to the first

is eventually larger (in modulus) than that of the second: |u(k) | > | v(k) |, for k À 0.

Solution: |u(k) | = |λ |k | a | > | v(k) | = |µ |k | b | provided k >
log | b | − log | a |
log |λ | − log |µ | , where the

inequality relies on the fact that log |λ | > log |µ |.
10.1.9. Let λ, c be fixed. Solve the affine (or inhomogeneous linear) iterative equation

u(k+1) = λ u(k) + c, u(0) = a. (10.5)

Discuss the possible behaviors of the solutions. Hint : Write the solution in the form u(k) =

u? + v(k), where u? is the equilibrium solution.

Solution: The equilibrium solution is u? = c/(1 − λ). Then v(k) = u(k) − u? satisfies the

homogeneous system v(k+1) = λ v(k), and so v(k) = λkv(0) = λk(a − u?). Thus, the solution

to (10.5) is u(k) = λk(a − u?) + u?. If |λ | < 1, then the equilibrium is asymptotically stable,

with u(k) → u? as k → ∞; if |λ | = 1, it is stable, and solutions that start near u? stay nearby;

if |λ | > 1, it is unstable, and all non-equilibrium solutions become unbounded: |u(k) | → ∞.

10.1.10. A bank offers 5% interest compounded yearly. Suppose you deposit $120 in the ac-
count each year. Set up an affine iterative equation (10.5) to represent your bank balance.
How much money do you have after 10 years? After you retire in 50 years? After 200 years?

Solution: Let u(k) represent the balance after k years. Then u(k+1) = 1.05 u(k) + 120, with

u(0) = 0. The equilibrium solution is u? = −120/.05 = −2400, and so after k years the balance

is u(k) = (1.05k − 1) · 2400. Then u(10) = $1, 509.35, u(50) = $25, 121.76, u(200) = $4, 149, 979.40.

10.1.11. Redo Exercise 10.1.10 in the case when the interest is compounded monthly and you
deposit $10 each month.

Solution: If u(k) represent the balance after k months, then u(k+1) = (1 + .05/12) u(k) + 10,

u(0) = 0. The balance after k months is u(k) = (1.0041667k −1) ·2400. Then u(120) = $1, 552.82,

u(600) = $26, 686.52, u(2400) = $5, 177, 417.44.

♥ 10.1.12. Each spring the deer in Minnesota produce offspring at a rate of roughly 1.2 times
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the total population, while approximately 5% of the population dies as a result of preda-
tors and natural causes. In the fall hunters are allowed to shoot 3, 600 deer. This winter
the Department of Natural Resources (DNR) estimates that there are 20, 000 deer. Set up
an affine iterative equation (10.5) to represent the deer population each subsequent year.
Solve the system and find the population in the next 5 years. How many deer in the long
term will there be? Using this information, formulate a reasonable policy of how many deer
hunting licenses the DNR should allow each fall, assuming one kill per license.

Solution: u(k+1) = 1.15 u(k) − 3600, u(0) = 20000. The equilibrium is u? = 3600/.15 = 24, 000.
Since λ = 1.15 > 1, the equilibrium is unstable; if the initial number of deer is less than the
equilibrium, the population will decrease to zero, while if it is greater, then the population will
increase without limit. Two possible options: ban hunting for 2 years until the deer reaches
equilibrium of 24, 000 and then permit at the current rate again. Or to keep the population at
20, 000 allow hunting of only 3, 000 deer per year. In both cases, the instability of the equilib-
rium makes it unlikely that the population will maintain a stable number, so constant monitor-
ing of the deer population is required. (More realistic models incorporate nonlinear terms, and
are less prone to such instabilities.)

10.1.13. Find the explicit formula for the solution to the following linear iterative systems:

(a) u(k+1) = u(k) − 2v(k), v(k+1) = −2u(k) + v(k), u(0) = 1, v(0) = 0.

(b) u(k+1) = u(k) − 2
3 v(k), v(k+1) = 1

2 u(k) − 1
6 v(k), u(0) = −2, v(0) = 3.

(c) u(k+1) = u(k) − v(k), v(k+1) = −u(k) + 5v(k), u(0) = 1, v(0) = 0.

(d) u(k+1) = 1
2 u(k) + v(k), v(k+1) = v(k) − 2w(k), w(k+1) = 1

3 w(k),

u(0) = 1, v(0) = −1, w(0) = 1.

(e) u(k+1) = −u(k) + 2v(k) − w(k), v(k+1) = −6u(k) + 7v(k) − 4w(k),

w(k+1) = −6u(k) + 6v(k) − 4w(k), u(0) = 0, v(0) = 1, w(0) = 3.

Solution:

(a) u(k) =
3k + (−1)k

2
, v(k) =

−3k + (−1)k

2
.

(b) u(k) = − 20

2k
+

18

3k
, v(k) = − 15

2k
+

18

3k
.

(c) u(k) =
(
√

5 + 2)(3 −
√

5)k + (
√

5 − 2)(3 +
√

5)k

2
√

5
, v(k) =

(3 −
√

5)k − (3 +
√

5)k

2
√

5
.

(d) u(k) = −8 +
27

2k
− 18

3k
, v(k) = −4 +

1

3k−1
, w(k) =

1

3k
.

(e) u(k) = 1 − 2k, v(k) = 1 + 2(−1)k − 2k+1, w(k) = 4(−1)k − 2k.

10.1.14. Find the explicit formula for the general solution to the linear iterative systems with
the following coefficient matrices:

(a)

 
−1 2

1 −1

!
, (b)

 
−2 7
−1 3

!
, (c)

0
B@
−3 2 −2
−6 4 −3
12 −6 −5

1
CA, (d)

0
BBBB@

− 5
6

1
3 − 1

6

0 − 1
2

1
3

1 −1 2
3

1
CCCCA

.

Solution:

(a) u(k) = c1 (−1 −
√

2)k
 
−
√

2
1

!
+ c2 (−1 +

√
2)k

 √
2

1

!
;
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(b)

u
(k) = c1

“
1
2 +

√
3

2 i
”k

0
B@

5− i
√

3
2

1

1
CA+ c2

“
1
2 −

√
3

2 i
”k

0
B@

5+ i
√

3
2

1

1
CA

= a1

0
@

5
2 cos 1

3 kπ +
√

3
2 sin 1

3 kπ

cos 1
3 kπ

1
A+ a2

0
@

5
2 sin 1

3 kπ −
√

3
2 cos 1

3 kπ

sin 1
3 kπ

1
A;

(c) u(k) = c1

0
B@

1
2
0

1
CA+ c2 (−2)k

0
B@

2
3
2

1
CA+ c3 (−3)k

0
B@

2
3
3

1
CA;

(d) u(k) = c1
“
− 1

2

”k

0
B@

1
1
0

1
CA+ c2

“
− 1

3

”k

0
B@

1
2
1

1
CA+ c3

“
1
6

”k

0
B@

0
1
2

1
CA.

10.1.15. The kth Lucas number is defined as L(k) =

 
1 +

√
5

2

!k

+

 
1 −

√
5

2

!k

.

(a) Explain why the Lucas numbers satisfy the Fibonacci iterative equation L(k+2) =

L(k+1) +L(k). (b) Write down the first 7 Lucas numbers. (c) Prove that every Lucas num-
ber is a positive integer.

Solution: (a) It suffices to note that the Lucas numbers are the general Fibonacci numbers

(10.16) when a = L(0) = 2, b = L(1) = 1. (b) 2, 1, 3, 4, 7, 11, 18. (c) Because the first two

are integers and so, by induction, L(k+2) = L(k+1) + L(k) is an integer whenever L(k+1), L(k)

are integers.

10.1.16. Prove that all the Fibonacci integers u(k), k ≥ 0, can be found by just computing the
first term in the Binet formula (10.17) and then rounding off to the nearest integer.

Solution:

The second summand satisfies

˛̨
˛̨
˛̨
˛
− 1√

5

0
@1 −

√
5

2

1
A

k
˛̨
˛̨
˛̨
˛
< .448 × .62k < .5 for all k ≥ 0. Q.E.D.

10.1.17. What happens to the Fibonacci integers u(k) if we go “backward in time”, i.e., for

k < 0? How is u(−k) related to u(k)?

Solution: u(−k) = (−1)k+1 u(k). Indeed, since
1

1+
√

5
2

=
−1 +

√
5

2
,

u(−k) =
1√
5

2
64

0
@1 +

√
5

2

1
A

−k

−
0
@1 −

√
5

2

1
A

−k
3
75 =

1√
5

2
64

0
@−1 +

√
5

2

1
A

k

−
0
@−1 −

√
5

2

1
A

k
3
75

=
1√
5

2
64(−1)k

0
@1 −

√
5

2

1
A

−k

− (−1)k
0
@1 +

√
5

2

1
A

k
3
75

=
(−1)k+1

√
5

2
64

0
@1 +

√
5

2

1
A

k

−
0
@1 −

√
5

2

1
A

k
3
75 = (−1)k+1 u(k).

10.1.18. Use formula (10.20) to compute the kth power of the following matrices:

(a)

 
5 2
2 2

!
, (b)

 
4 1

−2 1

!
, (c)

 
1 1

−1 1

!
, (d)

0
B@

1 1 2
1 2 1
2 1 1

1
CA, (e)

0
B@

0 1 0
0 0 1

−1 0 2

1
CA.

Solution:
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(a)

 
5 2
2 2

!k

=

 
2 −1
1 2

! 
6k 0
0 1

!0
B@

2
5

1
5

− 1
5

2
5

1
CA,

(b)

 
4 1

−2 1

!k

=

 
−1 −1

1 2

! 
3k 0
0 2k

! 
−2 −1

1 1

!
,

(c)

 
1 1

−1 1

!k

=

0
B@

− i i

1 1

1
CA

0
B@

(1 + i )k 0

0 (1 − i )k

1
CA

0
B@

i
2

1
2

− i
2

1
2

1
CA,

(d)

0
B@

1 1 2
1 2 1
2 1 1

1
CA

k

=

0
BBBB@

1 1 −1

1 −2 0

1 1 1

1
CCCCA

0
BBBB@

4k 0 0

0 1 0

0 0 (−1)k

1
CCCCA

0
BBBB@

1
3

1
3

1
3

1
6 − 1

3
1
6

− 1
2 0 1

2

1
CCCCA

,

(e)

0
B@

0 1 0
0 0 1

−1 0 2

1
CA

k

=

0
BBBB@

3−
√

5
2

3+
√

5
2 1

−1+
√

5
2

−1−
√

5
2 1

1 1 1

1
CCCCA

0
BBBBB@

„
1+

√
5

2

«k
0 0

0
„

1+
√

5
2

«k
0

0 0 1

1
CCCCCA

0
BBBB@

−5−3
√

5
10

−5−
√

5
10

5+2
√

5
5

−5+3
√

5
10

−5+
√

5
10

5−2
√

5
5

1 1 −1

1
CCCCA

.

10.1.19. Use your answer from Exercise 10.1.18 to solve the following iterative systems:

(a) u(k+1) = 5u(k) + 2v(k), v(k+1) = 2u(k) + 2v(k), u(0) = −1, v(0) = 0,

(b) u(k+1) = 4u(k) + v(k), v(k+1) = −2u(k) + v(k), u(0) = 1, v(0) = −3,

(c) u(k+1) = u(k) + v(k), v(k+1) = −u(k) + v(k), u(0) = 0, v(0) = 2,

(d) u(k+1) = u(k) + v(k) + 2w(k), v(k+1) = u(k) + 2v(k) + w(k),

w(k+1) = 2u(k) + v(k) + w(k), u(0) = 1, v(0) = 0, w(0) = 1,

(e) u(k+1) = v(k), v(k+1) = w(k), w(k+1) = −u(k) + 2w(k), u(0) = 1, v(0) = 0, w(0) = 0.

Solution: (a)

 
u(k)

v(k)

!
=

 
2 −1
1 2

! 
− 2

5 6k

− 1
5

!
, (b)

 
u(k)

v(k)

!
=

 
−1 −1

1 2

! 
3k

−2k+1

!
,

(c)

 
u(k)

v(k)

!
=

0
B@

− i i

1 1

1
CA

0
B@

− i (1 + i )k

(1 − i )k

1
CA, (d)

0
B@

u(k)

v(k)

w(k)

1
CA =

0
BBBB@

1 1 −1

1 −2 0

1 1 1

1
CCCCA

0
BBBB@

2
3 4k

1
3

0

1
CCCCA

,

(e)

0
B@

u(k)

v(k)

w(k)

1
CA =

0
BBBB@

3−
√

5
2

3+
√

5
2 1

−1+
√

5
2

−1−
√

5
2 1

1 1 1

1
CCCCA

0
BBBBBB@

−5+3
√

5
10

„
1+

√
5

2

«k

−5+
√

5
10

„
1+

√
5

2

«k

− 1

1
CCCCCCA

.

10.1.20. (a) Given initial data u(0) = ( 1, 1, 1 )T , explain why the resulting solution u(k) to the
system in Example 10.7 has all integer entries. (b) Find the coefficients c1, c2, c3 in the
explicit solution formula (10.18). (c) Check the first few iterates to convince yourself that
the solution formula does, in spite of appearances, always give an integer value.

Solution: (a) Since the coefficient matrix T has all integer entries, its product T u with any vec-
tor with integer entries also has integer entries; (b) c1 = −2, c2 = 3, c2 = −3;

(c) u
(1) =

0
B@

4
−2
−2

1
CA, u

(2) =

0
B@
−26

10
−2

1
CA, u

(3) =

0
B@

76
−32

16

1
CA, u

(4) =

0
B@
−164

76
−44

1
CA, u

(5) =

0
B@

304
−152

88

1
CA.
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10.1.21. (a) Show how to convert the higher order linear iterative equation

u(k+j) = c1 u(k+j−1) + c2 u(k+j−2) + · · · + cj u(k)

into a first order system u(k) = T u(k). Hint : See Example 10.6.

(b) Write down initial conditions that guarantee a unique solution u(k) for all k ≥ 0.

Solution: The vectors u(k) =
“

u(k), u(k+1), . . . , u(k+j−1)
”T ∈ R

j satisfy u(k+1) = T u(k),

where T =

0
BBBBBBBBB@

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
cj cj−1 cj−2 cj−3 . . . c1

1
CCCCCCCCCA

. The initial conditions are u(0) = a =

“
a0, a1, . . . , aj−1

”T
, and so u(0) = a0, u(1) = a1, . . . , u(j−1) = aj−1.

10.1.22. Apply the method of Exercise 10.1.21 to solve the following iterative equations:

(a) u(k+2) = −u(k+1) + 2u(k), u(0) = 1, u(1) = 2.

(b) 12u(k+2) = u(k+1) + u(k), u(0) = −1, u(1) = 2.

(c) u(k+2) = 4u(k+1) + u(k), u(0) = 1, u(1) = −1.

(d) u(k+2) = 2u(k+1) − 2u(k), u(0) = 1, u(1) = 3.

(e) u(k+3) = 2u(k+2) + u(k+1) − 2u(k), u(0) = 0, u(1) = 2, u(2) = 3.

(f ) u(k+3) = u(k+2) + 2u(k+1) − 2u(k), u(0) = 0, u(1) = 1, u(2) = 1.

Solution: (a) u(k) = 4
3 − 1

3 (−2)k, (b) u(k) =
“

1
3

”k−1
+
“
− 1

4

”k−1
,

(c) u(k) =
(5 − 3

√
5)(2 +

√
5)k + (5 + 3

√
5)(2 −

√
5)k

10
;

(d) u(k) =
“

1
2 − i

”
(1 + i )k +

“
1
2 + i

”
(1 − i )k = 2k/2

“
cos 1

4 kπ + 2 sin 1
4 kπ

”
;

(e) u(k) = − 1
2 − 1

2 (−1)k + 2k; (f ) u(k) = −1 +
“

1 + (−1)k
”

2k/2−1.

♣ 10.1.23. Starting with u(0) = 0, u(1) = 0, u(2) = 1, we define the sequence of tri–Fibonacci

integers u(k) by adding the previous three to get the next one. For instance, u(3) = u(0) +

u(1) + u(2) = 1. (a) Write out the next four tri–Fibonacci integers. (b) Find a third order
iterative equation for the nth tri–Fibonacci integer. (c) Find an explicit formula for the
solution, using a computer to approximate the eigenvalues. (d) Do they grow faster than
the usual Fibonacci numbers? What is their overall rate of growth?

Solution: (a) u(k+3) = u(k+2) + u(k+1) + u(k); (b) u(4) = 2, u(5) = 4, u(6) = 7, u(7) = 13;

(c)
u(k) ≈ .183 × 1.839k + 2Re (− .0914018 + .340547 i ) (− .419643 + .606291 i )k

= .183 × 1.839k − .737353k
“

.182804 cos 2.17623 k + .681093 sin 2.17623 k
”
.

♣ 10.1.24. Suppose that Fibonacci’s rabbits only live for eight years, [38]. (a) Write out an
iterative equation to describe the rabbit population. (b) Write down the first few terms.
(c) Convert your equation into a first order iterative system using the method of Exercise
10.1.21. (d) At what rate does the rabbit population grow?

Solution:
(a) u(k) = u(k−1) + u(k−2) − u(k−8).
(b) 0, 1, 1, 2, 3, 5, 8, 13, 21, 33, 53, 84, 134, 213, 339, 539, 857, 1363, 2167, . . . .

(c) u(k) =
“

u(k), u(k+1), . . . , u(k+7)
”T

satisfies u(k+1) = Au(k) where the 8 × 8 coeffi-
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cient matrix A has 1’s on the superdiagonal, last row (−1, 0, 0, 0, 0, 0, 1, 1 ) and all other
entries 0.

(d) The growth rate is given by largest eigenvalue in magnitude: λ1 = 1.59, with u(n) ∝ 1.59n.
For more details, see [38].

10.1.25. Find the general solution to the iterative system u
(k+1)
i = u

(k)
i−1 + u

(k)
i+1, i = 1, . . . , n,

where we set u
(k)
0 = u

(k)
n+1 = 0 for all k. Hint : Use Exercise 8.2.46.

Solution: u
(k)
i =

nX

j =1

cj

 
2 cos

j π

n + 1

!k

sin
ij π

n + 1
, i = 1, . . . , n.

10.1.26. Prove that the curves Ek = {T kx | ‖x ‖ = 1 }, k = 0, 1, 2, . . . , sketched in Figure 10.2
form a family of ellipses with the same principal axes. What are the semi-axes? Hint : Use
Exercise 8.5.21.

Solution: The key observation is that coefficient matrix T is symmetric. Then, according to Ex-
ercise 8.5.21, the principal axes of the ellipse E1 = {T x | ‖x ‖ = 1 } are the orthogonal eigenvec-

tors of T . Moreover, T k is also symmetric and has the same eigenvectors. Hence, all the ellipses
Ek have the same principal axes. The semi-axes are the absolute values of the eigenvalues, and

hence Ek has semi-axes ( .8)k and ( .4)k.

♠ 10.1.27. Plot the ellipses Ek = {T kx | ‖x ‖ = 1 } for k = 1, 2, 3, 4 for the following matrices T .
Then determine their principal axes, semi-axes, and areas. Hint : Use Exercise 8.5.21.

(a)

0
B@

2
3 − 1

3

− 1
3

2
3

1
CA, (b)

 
0 −1.2
.4 0

!
, (c)

0
B@

3
5

1
5

2
5

4
5

1
CA.

Solution:
(a) itz1

E1: principal axes:

 
−1

1

!
,

 
1
1

!
, semi-axes: 1, 1

3 , area: 1
3 π.

E2: principal axes:

 
−1

1

!
,

 
1
1

!
, semi-axes: 1, 1

9 , area: 1
9 π.

E3: principal axes:

 
−1

1

!
,

 
1
1

!
, semi-axes: 1, 1

27 , area: 1
27 π.

E4: principal axes:

 
−1

1

!
,

 
1
1

!
, semi-axes: 1, 1

81 , area: 1
81 π.

(b) itz2

E1: principal axes:

 
1
0

!
,

 
0
1

!
, semi-axes: 1.2, .4, area: .48π = 1.5080.

E2: circle of radius .48, area: .2304π = .7238.

E3: principal axes:

 
1
0

!
,

 
0
1

!
, semi-axes: .576, .192, area: .1106π = .3474.

E4: circle of radius .2304, area: .0531π = .1168.
(c) itz3

E1: principal axes:

 
.6407
.7678

!
,

 
−.7678

.6407

!
, semi-axes: 1.0233, .3909, area: .4π = 1.2566.

E2: principal axes:

 
.6765
.7365

!
,

 
−.7365

.6765

!
, semi-axes: 1.0394, .1539, area: .16π = .5027.

E3: principal axes:

 
.6941
.7199

!
,

 
−.7199

.6941

!
, semi-axes: 1.0477, .0611, area: .064π = .2011.
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E4: principal axes:

 
.7018
.7124

!
,

 
−.7124

.7018

!
, semi-axes: 1.0515, .0243, area: .0256π = .0804.

10.1.28. Let T be a positive definite 2 × 2 matrix. Let En = {Tnx | ‖x ‖ = 1 }, n = 0, 1, 2, . . . ,

be the image of the unit circle under the nth power of T . (a) Prove that En is an ellipse.
True or false: (b) The ellipses En all have the same principal axes. (c) The semi-axes are
given by rn = rn

1 , sn = sn
1 . (d) The areas are given by An = παn where α = A1/π.

Solution: (a) See Exercise 8.5.21. (b) True — they are the eigenvectors of T . (c) True — r1, s1
are the eigenvalues of T . (d) True, since the area is π times the product of the semi-axes, so
A1 = πr1s1, so α = r1s1 = | det T |. Then An = πrnsn = πrn

1 sn
1 = π| det T |n = παn.

10.1.29. Answer Exercise 10.1.28 when T an arbitrary nonsingular 2 × 2 matrix. Hint : Use
Exercise 8.5.21.

Solution: (a) Follows from Exercise 8.5.21. (b) False; see Exercise 10.1.27(c) for a counterex-
ample. (c) False — the singular values of T n are not, in general, the nth powers of the singular
values of T . (d) True, since the product of the singular values is the absolute value of the de-
terminant, An = π| det T |n.

10.1.30. Given the general solution (10.9) of the iterative system u(k+1) = T u(k), write down

the solution to v(k+1) = α T v(k) + β v(k), where α, β are fixed scalars.

Solution: v(k) = c1 (αλ1 + β)k v1 + · · · + cn (αλn + β)k vn.

♦ 10.1.31. Prove directly that if the coefficient matrix of a linear iterative system is real, both
the real and imaginary parts of a complex solution are real solutions.

Solution: If u(k) = x(k) + iy(k) is a complex solution, then the iterative equation becomes

x(k+1) + iy(k+1) = T x(k) + i T y(k). Separating the real and imaginary parts of this complex

vector equation and using the fact that T is real, we deduce x(k+1) = T x(k), y(k+1) = T y(k).

Therefore, x(k),y(k) are real solutions to the iterative system. Q.E.D.

♦ 10.1.32. Explain why the solution u(k), k ≥ 0, to the initial value problem (10.6) exists and is
uniquely defined. Does this hold if we allow negative k < 0?

Solution: The formula uniquely specifies u(k+1) once u(k) is known. Thus, by induction, once

the initial value u(0) is fixed, there is only one possible solution for k = 0, 1, 2, . . . . Existence

and uniqueness also hold for k < 0 when T is nonsingular, since u(−k−1) = T−1u(−k). If T is

singular, the solution will not exist for k < 0 if any u(−k) 6∈ rng T , or, if it exists, is not unique

since we can add any element of ker T to u(−k) without affecting u(−k+1),u(−k+2), . . . .

10.1.33. Prove that if T is a symmetric matrix, then the coefficients in (10.9) are given by the

formula cj = aT vj /vT
j vj .

Solution: According to Theorem 8.20, the eigenvectors of T are real and form an orthogonal
basis of R

n with respect to the Euclidean norm. The formula for the coefficients cj thus follows

directly from (5.8).

10.1.34. Explain why the jth column c
(k)
j of the matrix power T k satisfies the linear iterative

system c
(k+1)
j = T c

(k)
j with initial data c

(0)
j = ej , the jth standard basis vector.

Solution: Since matrix multiplication acts column-wise, cf. (1.11), the jth column of the matrix

equation T k+1 = T T k is c
(k+1)
j = T c

(k)
j . Moreover, T 0 = I has jth column c

(0)
j = ej . Q.E.D.
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10.1.35. Let z(k+1) = λ z(k) be a complex scalar iterative equation with λ = µ + i ν. Show

that its real and imaginary parts x(k) = Re z(k), y(k) = Im z(k), satisfy a two-dimensional
real linear iterative system. Use the eigenvalue method to solve the real 2 × 2 system, and
verify that your solution coincides with the solution to the original complex equation.

Solution:

 
x(k+1)

y(k+1)

!
=

 
µ −ν
ν µ

! 
x(k)

y(k)

!
. The eigenvalues of the coefficient matrix are µ ± i ν,

with eigenvectors

 
1
∓ i

!
and so the solution is

 
x(k)

y(k)

!
=

x(0) + i y(0)

2
(µ + i ν)k

 
1
− i

!
+

x(0) − i y(0)

2
(µ − i ν)k

 
1
i

!
.

Therefore z(k) = x(k) + i y(k) = (x(0) + i y(0))(µ + i ν)k = λkz(0). Q.E.D.

♦ 10.1.36. Let T be an incomplete matrix, and suppose w1, . . . ,wj is a Jordan chain associated

with an incomplete eigenvalue λ. (a) Prove that, for any i = 1, . . . , j,

T k
wi = λk

wi + kλk−1
wi−1 +

0
@k

2

1
Aλk−2

wi−2 + · · · . (10.23)

(b) Explain how to use a Jordan basis of T to construct the general solution to the linear

iterative system u(k+1) = T u(k).

Solution:
(a) Proof by induction:

T k+1
wi = T

0
@λk

wi + kλk−1
wi−1 +

0
@k

2

1
Aλk−2

wi−2 + · · ·
1
A

= λk T wi + kλk−1 T wi−1 +

0
@k

2

1
Aλk−2 T wi−2 + · · ·

= λk (λwi + wi−1) + kλk−1 (λwi−1 + wi−2) +

0
@k

2

1
Aλk−2 (λwi−2 + wi−3) + · · ·

= λk+1
wi + (k + 1)λk

wi−1 +

0
@k + 1

2

1
Aλk−1

wi−2 + · · · .

(b) Each Jordan chain of length j is used to construct j linearly independent solutions by
formula (10.23). Thus, for an n-dimensional system, the Jordan basis produces the re-
quired number of linearly independent (complex) solutions, and the general solution is
obtained by taking linear combinations. Real solutions of a real iterative system are ob-
tained by using the real and imaginary parts of the Jordan chain solutions correspond-
ing to the complex conjugate pairs of eigenvalues.

10.1.37. Use the method Exercise 10.1.36 to find the general real solution to the following iter-
ative systems:

(a) u(k+1) = 2u(k) + 3v(k), v(k+1) = 2v(k),

(b) u(k+1) = u(k) + v(k), v(k+1) = −4u(k) + 5v(k),

(c) u(k+1) = −u(k) + v(k) + w(k), v(k+1) = −v(k) + w(k), w(k+1) = −w(k),

(d) u(k+1) = 3u(k) − v(k), v(k+1) = −u(k) + 3v(k) + w(k), w(k+1) = −v(k) + 3w(k),

(e) u(k+1) = u(k)−v(k)−w(k), v(k+1) = 2u(k)+2v(k)+2w(k), w(k+1) = −u(k)+v(k)+w(k),

(f ) u(k+1) = v(k) + z(k), v(k+1) = −u(k) + w(k), w(k+1) = z(k), z(k+1) = −w(k).

Solution:
(a) u(k) = 2k

“
c1 + 1

2 kc2
”
, v(k) = 1

3 2k c2;
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(b) u(k) = 3k
h
c1 +

“
1
3 k − 1

2

”
c2
i
, v(k) = 3k

h
2c1 + 2

3 kc2
i
;

(c) u(k) = (−1)k
h
c1 − kc2 + 1

2 k(k − 1)c3
i
, v(k) = (−1)k

h
c2 − (k + 1)c3

i
, w(k) = (−1)k c3;

(d) u(k) = 3k
h
c1 + 1

3 kc2 +
“

1
18 k (k − 1) + 1

”
c3
i
, v(k) = −3k

h
c2 + 1

3 kc3
i
,

w(k) = 3k
h
c1 + 1

3 kc2 + 1
18 k (k − 1)c3

i
;

(e) u(0) = −c2, v(0) = −c1 + c3, w(k) = c1 + c2, while, for k > 0,

u(k) = −2k
“

c2 + 1
2 kc3

”
, v(k) = 2k c3, w(k) = 2k

“
c2 + 1

2 kc3
”
;

(f ) u(k) = − ik+1 c1 − k ik c2 − (− i )k+1c3 − k(− i )kc4, w(k) = − ik+1 c2 − (− i )k+1c4,

v(k) = i kc1 + k ik−1 c2 + (− i )kc3 + k(− i )k−1c4, z(k) = ik c2 + (− i )kc4.

10.1.38. Find a formula for the kth power of a Jordan block matrix. Hint : Use Exercise 10.1.36.

Solution: Jk
λ,n =

0
BBBBBBBBBBBBBBBBBB@

λk kλk−1
“

k
2

”
λk−2

“
k
3

”
λk−3 . . .

“
k

n−1

”
λk−n+1

0 λk kλk−1
“

k
2

”
λk−2 . . .

“
k

n−2

”
λk−n+2

0 0 λk kλk−1 . . .
“

k
n−3

”
λk−n+3

0 0 0 λk . . .
“

k
n−4

”
λk−n+4

...
...

...
...

. . .
...

0 0 0 0 . . . λn

1
CCCCCCCCCCCCCCCCCCA

.

♥ 10.1.39. An affine iterative system has the form u
(k+1) = T u

(k) + b, u
(0) = c. (a) Under

what conditions does the system have an equilibrium solution u(k) ≡ u?? (b) In such

cases, find a formula for the general solution. Hint : Look at v(k) = u(k) − u?. (c) Solve
the following affine iterative systems:

(i) u
(k+1) =

 
6 3

−3 −4

!
u

(k) +

 
1
2

!
, u

(0) =

 
4

−3

!
,

(ii) u
(k+1) =

 
−1 2

1 −1

!
u

(k) +

 
1
0

!
, u

(0) =

 
0
1

!
,

(iii) u
(k+1) =

0
B@
−3 2 −2
−6 4 −3
12 −6 −5

1
CAu

(k) +

0
B@

1
−3

0

1
CA , u

(0) =

0
B@

1
0

−1

1
CA ,

(iv) u
(k+1) =

0
BBBB@

− 5
6

1
3 − 1

6

0 − 1
2

1
3

1 −1 2
3

1
CCCCA
u

(k) +

0
BBBB@

1
6

− 1
3

− 1
2

1
CCCCA

, u
(0) =

0
BBBB@

1
6

− 2
3
1
3

1
CCCCA

. (d) Discuss

what happens in cases when there is no fixed point, assuming that T is complete.

Solution:
(a) The system has an equilibrium solution if and only if (T − I )u? = b. In particular, if 1

is not an eigenvalue of T , every b leads to an equilibrium solution.

(b) Since v(k+1) = T v(k), the general solution is

u
(k) = u

? + c1 λk
1 v1 + c2 λk

2 v2 + · · · + cn λk
n vn,

where v1, . . . ,vn are the linearly independent eigenvectors and λ1, . . . , λn the corre-
sponding eigenvalues of T .

(c) (i) u(k) =

 
2
3

−1

!
− 5k

 
−3

1

!
− (−3)k

 
− 1

3
1

!
;
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(ii) u(k) =

 
1
1

!
+

(−1 −
√

2)k

2
√

2

 
−
√

2
1

!
− (−1 +

√
2)k

2
√

2

 √
2
1

!
;

(iii) u(k) =

0
B@

−1
− 3

2
−1

1
CA− 3

0
B@

1
2
0

1
CA+ 15

2 (−2)k

0
B@

2
3
2

1
CA− 5(−3)k

0
B@

2
3
3

1
CA;

(iv) u(k) =

0
BBBB@

1
6
5
3
3
2

1
CCCCA

+ 7
2

“
− 1

2

”k

0
BBBB@

1

1

0

1
CCCCA

− 7
2

“
− 1

3

”k

0
BBBB@

1

2

1

1
CCCCA

+ 7
3

“
1
6

”k

0
BBBB@

0

1
2

1

1
CCCCA

.

(d) In general, using induction, the solution is

u
(k) = T k

c + ( I + T + T 2 + · · · + T k−1)b.

If we write b = b1v1 + · · · + bn vn, c = c1v1 + · · · + cn vn, in terms of the eigenvectors,
then

u
(k) =

nX

j =1

h
λk

j cj + (1 + λj + λ2
j + · · · + λk−1

j )bj

i
vj .

If λj 6= 1, one can use the geometric sum formula 1 + λj + λ2
j + · · · + λk−1

j =
1 − λk

j

1 − λj

,

while if λj = 1, then 1 + λj + λ2
j + · · · + λk−1

j = k. Incidentally, the equilibrium solution

is

u
? =

X

λj 6=1

bj

1 − λj

vj .

♣ 10.1.40. A well-known method of generating a sequence of “pseudo-random” integers x0, x1, . . .

in the interval from 0 to n is based on the Fibonacci equation u(k+2) = u(k+1)+u(k) mod n,

with the initial values u(0), u(1) chosen from the integers 0, 1, 2, . . . , n − 1. (a) Generate the

sequence of pseudo-random numbers that result from the choices n = 10, u(0) = 3, u(1) = 7.
Keep iterating until the sequence starts repeating. (b) Experiment with other sequences of
pseudo-random numbers generated by the method.

Solution:

10.2. Stability.listability

10.2.1. Determine the spectral radius of the following matrices:

(a)

 
1 2
3 4

!
, (b)

0
B@

1
3 − 1

4
1
2 − 1

3

1
CA, (c)

0
B@

0 1 0
0 0 1

−2 1 2

1
CA, (d)

0
B@
−1 5 −9

4 0 −1
4 −4 3

1
CA.

Solution:
(a) Eigenvalues: 5+

√
33

2 ≈ 5.3723, 5−
√

33
2 ≈ − .3723; spectral radius: 5+

√
33

2 ≈ 5.3723.

(b) Eigenvalues: ± i
6
√

2
≈ ± .11785 i ; spectral radius: 1

6
√

2
≈ .11785.

(c) Eigenvalues: 2, 1,−1; spectral radius: 2.

(d) Eigenvalues: 4,−1 ± 4 i ; spectral radius:
√

17 ≈ 4.1231.

10.2.2. Determine whether or not the following matrices are convergent:
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(a)

 
2 −3
3 2

!
, (b)

 
.6 .3
.3 .7

!
, (c)

1

5

0
B@

5 −3 −2
1 −2 1
1 −5 4

1
CA, (d)

0
B@

.8 .3 .2

.1 .2 .6

.1 .5 .2

1
CA.

Solution:
(a) Eigenvalues: 2 ± 3 i ; spectral radius:

√
13 ≈ 3.6056; not convergent.

(b) Eigenvalues: .95414, .34586; spectral radius: .95414; convergent.

(c) Eigenvalues: 4
5 , 3

5 , 0; spectral radius: 4
5 ; convergent.

(d) Eigenvalues: 1., .547214,−.347214; spectral radius: 1; not convergent.

10.2.3. Which of the listed coefficient matrices defines a linear iterative system with asymptot-
ically stable zero solution?

(a)

 
−3 0
−4 −1

!
, (b)

0
B@

1
2

3
4

2
3

1
3

1
CA, (c)

0
B@

1
2

1
2

− 1
2

1
2

1
CA, (d)

0
B@
−1 3 0
−1 1 −1

0 −1 −1

1
CA,

(e)

0
BBBB@

1
2

1
4 − 1

4
1
2

3
4 − 1

2

− 1
4 − 1

4
1
2

1
CCCCA

, (f )

0
B@

3 0 −1
0 1 0
2 0 0

1
CA, (g)

0
BBBBBBB@

1 0 −3 −2

− 1
2

1
2 2 3

2

− 1
6 0 3

2
2
3

2
3 0 −3 − 5

3

1
CCCCCCCA

.

Solution:
(a) Unstable — eigenvalues −1,−3;

(b) unstable — eigenvalues 5+
√

73
12 ≈ 1.12867, 5−

√
73

12 ≈ − .29533;

(c) asymptotically stable — eigenvalues 1± i
2 ;

(d) stable — eigenvalues −1,± i ;

(e) unstable — eigenvalues 5
4 , 1

4 , 1
4 ;

(f ) unstable — eigenvalues 2, 1, 1;,

(g) asymptotically stable — eigenvalues 1
2 , 1

3 , 0.

10.2.4. (a) Determine the eigenvalues and spectral radius of the matrix T =

0
B@

3 2 −2
−2 1 0

0 2 1

1
CA.

(b) Use this information to find the eigenvalues and spectral radius of bT =

0
BBBB@

3
5

2
5 − 2

5

− 2
5

1
5 0

0 2
5

1
5

1
CCCCA

.

(c) Write down an asymptotic formula for the solutions to the iterative system u(k+1) = bT u(k).

Solution:
(a) λ1 = 3, λ2 = 1 + 2 i , λ3 = 1 − 2 i , ρ(T ) = 3.

(b) λ1 = 3
5 , λ2 = 1

5 + 2
5 i , λ3 = 1

5 − 2
5 i , ρ(eT ) = 3

5 .

(c) u(k) ≈ c1
“

3
5

”k
(−1,−1, 1 )T , provided the initial data has a non-zero component,

c1 6= 0, in the direction of the dominant eigenvector (−1,−1, 1 )T .

10.2.5. (a) Show that the spectral radius of T =

 
1 1
0 1

!
is ρ(T ) = 1. (b) Show that most

iterates u(k) = T ku(0) become unbounded as k → ∞. (c) Discuss why the inequality

‖u(k) ‖ ≤ C ρ(T )k does not hold when the coefficient matrix is incomplete. (d) Can you
prove that (10.28) holds in this example?
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Solution:
(a) T has a double eigenvalue of 1, so ρ(T ) = 1.

(b) Set u(0) =

 
a
b

!
. Then T k =

 
1 k
0 1

!
, and so u(k) =

 
a + kb

b

!
→ ∞ provided b 6= 0.

(c) In this example, ‖u(k) ‖ =
√

b2 k2 + 2abk + a2 + b2 ≈ bk → ∞ when b 6= 0, while

C ρ(T )k = C is constant, so eventually ‖u(k) ‖ > C ρ(T )k no matter how large C is.

(d) For any σ > 1, we have bk ≤ C σk for k ≥ 0 provided C À 0 is sufficiently large — more
specifically, if C > b/(e log σ); see Exercise 10.2.22.

10.2.6. Given a linear iterative system with non-convergent matrix, which solutions, if any,
will converge to 0?

Solution: A solution u(k) → 0 if and only if the initial vector u(0) = c1v1 + · · · + cj vj is a

linear combination of the eigenvectors (or more generally, Jordan chain vectors) corresponding
to eigenvalues satisfying |λi | < 1, i = 1, . . . , j.

10.2.7. Prove that if A is any square matrix, then there exists c 6= 0 such that the scalar multi-
ple cA is a convergent matrix. Find a formula for the largest possible such c.

Solution: Since ρ(cA) = | c |ρ(A), then cA is convergent if and only if | c | < 1/ρ(A). So, techni-
cally, there isn’t a largest c.

♦ 10.2.8. Suppose T is a complete matrix. (a) Prove that every solution to the corresponding
linear iterative system is bounded if and only if ρ(T ) ≤ 1. (b) Can you generalize this
result to incomplete matrices? Hint : Look at Exercise 10.1.36.

Solution:
(a) Let u1, . . . ,un be a unit eigenvector basis for T , so ‖uj ‖ = 1. Let

mj = max
n
| cj |

˛̨
˛ ‖ c1u1 + · · · + cn un ‖ ≤ 1

o
,

which is finite since we are maximizing a continuous function over a closed, bounded set.
Set m? = max{m1, . . . , mn}. Now, if

‖u
(0) ‖ = ‖ c1u1 + · · · + cn un ‖ < ε, then | cj | < m?ε for j = 1, . . . , n.

Therefore, by (10.25),

‖u
(k) ‖ =≤ | c1 | + · · · + | cn | ≤ n m?ε,

and hence the solution remains close to 0. Q.E.D.
(b) If any eigenvalue of modulus ‖λ ‖ = 1 is incomplete, then, according to (10.23), the sys-

tem has solutions of the form u(k) = λk wi + kλk−1wi−1 + · · · , which are unbounded as
k → ∞. Thus, the origin is not stable in this case. On the other hand, if all avs of mod-
ulus 1 are complete, then the system is stable, even if there are incomplete eigenvalues
of modulus < 1.

10.2.9. Suppose a convergent iterative system has a single dominant real eigenvalue λ1. Dis-
cuss how the asymptotic behavior of the real solutions depends on the sign of λ1.

Solution: Assume u(0) = c1v1 + · · · + cn vn with c1 6= 0. For k À 0, u(k) ≈ c1 λk
1 v1 since

|λk
1 | À |λk

j | for all j > 1. Thus, the entries satisfy u
(k+1)
i ≈ λ1 u

(k)
i and so, if nonzero, are just

multiplied by λ1. Thus, if λ1 > 0 we expect to see the signs of all the entries of u(k) not change
for k sufficiently large, whereas if λ1 < 0, the signs alterate at each step of the iteration.

♥ 10.2.10. (a) Discuss the asymptotic behavior of solutions to a convergent iterative system that
has two eigenvalues of largest modulus, e.g., λ1 = −λ2. How can you detect this? (b) Discuss
the case when A is a real matrix with a complex conjugate pair of dominant eigenvalues.
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Solution: Writing u(0) = c1v1 + · · · + cn vn, then for k À 0, u(k) ≈ λk
1 (c1 v1 + c2 (λ1/λ2)

k v2).
T

10.2.11. Suppose T has spectral radius ρ(T ). Can you predict the spectral radius of cT + d I ,
where c, d are scalars? If not, what additional information do you need?

Solution: If T has eigenvalues λj , then cT + d I has eigenvalues cλj + d. However, it is not

necessarily true that the dominant eigenvalue of cT + d I is cλ1 + d when λ1 is the dominant
eigenvalue of T . For instance, if λ1 = 3, λ2 = −2, so ρ(T ) = 3, then λ1 − 2 = 1, λ2 = −4, so
ρ(T − 2 I ) = 4 6= ρ(T ) − 2. Thus, you need to know all the eigenvalues to predict ρ(T ). (In
more detail, it actually suffices to know the extreme eigenvalues, i.e., those such that the other
eigenvalues lie in their convex hull in the complex plane.)

10.2.12. Let A have singular values σ1 ≥ · · · ≥ σn. Prove that AT A is a convergent matrix if
and only if σ1 < 1. (Later we will show that this implies that A itself is convergent.)

Solution: By definition, the eigenvalues of AT A are λi = σ2
i , and so the spectral radius of AT A

is equal to ρ(AT A) = max{σ2
1 , . . . , σ2

n }. Thus ρ(AT A) = λ1 < 1 if and only if σ1 =
q

λ1 < 1.

♥ 10.2.13. Let Mn be the n × n tridiagonal matrix with all 1’s on the sub- and super-diagonals,
and zeros on the main diagonal. (a) What is the spectral radius of Mn? Hint : Use Exer-
cise 8.2.46. (b) Is Mn convergent? (c) Find the general solution to the iterative system

u(k+1) = Mn u(k).

Solution: (a) ρ(Mn) = 2 cos π
n+1 . (b) No since its spectral radius is slightly less than 2. (c) u

(k)
i =

nX

j =1

cj

 
2 cos

j π

n + 1

!k

sin
ij π

n + 1
, i = 1, . . . , n.

♥ 10.2.14. Let α, β be scalars. Let Tα,β be the n × n tridiagonal matrix that has all α’s on the

sub- and super-diagonals, and β’s on the main diagonal. (a) Solve the iterative system

u(k+1) = Tα,β u(k). (b) For which values of α, β is the system asymptotically stable?

Hint : Combine Exercises 10.2.13 and 10.1.30.

Solution:

(a) u
(k)
i =

nX

j =1

cj

 
β + 2α cos

j π

n + 1

!k

sin
ij π

n + 1
, i = 1, . . . , n.

(b) Stable if and only if ρ(Tα,β) = (
˛̨
˛̨β ± 2α cos

π

n + 1

˛̨
˛̨ < 1. In particular, if |β ± 2α | < 1

the system is asymptotically stable for any n.

10.2.15. (a) Prove that if | det T | > 1 then the iterative system u(k+1) = T u(k) is unstable.
(b) If | det T | < 1 is the system necessarily asymptotically stable? Prove or give a coun-
terexample.

Solution:
(a) According to Exercise 8.2.24, T has at least one eigenvalue with |λ | > 1.

(b) No. For example T =

 
2 0
0 1

3

!
has det T = 2

3 but ρ(T ) = 2.

10.2.16. True or false: (a) ρ(cA) = c ρ(A), (b) ρ(S−1AS) = ρ(A), (c) ρ(A2) = ρ(A)2,

(d) ρ(A−1) = 1/ρ(A), (e) ρ(A + B) = ρ(A) + ρ(B), (f ) ρ(AB) = ρ(A) ρ(B).

Solution: (a) False: ρ(cA) = | c | ρ(A). (b) True. (c) True. (d) False since ρ(A) = max λ

whereas ρ(A−1) = max 1/λ. (e) False in almost all cases. (f ) False.
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10.2.17. True or false: (a) If A is convergent, then A2 is convergent. (b) If A is convergent,

then AT A is convergent.

Solution: (a) True by part (c) of Exercise 10.2.16. (b) False. A =

0
B@

1
2 1

0 1
2

1
CA has ρ(A) = 1

2

whereas AT A =

0
B@

1
4

1
2

1
2

5
4

1
CA has ρ(AT A) = 3

4 + 1
2

√
2 = 1.45711.

10.2.18. True or false: If the zero solution of the differential equation
¦

u = Au is asymptoti-

cally stable, so is the zero solution of the iterative system u(k+1) = Au(k).

Solution: False. The first requires Re λj < 0; the second requires |λj | < 1.

10.2.19. Suppose T k → A as k → ∞. (a) Prove that A2 = A. (b) Can you characterize all
such matrices A? (c) What are the conditions on the matrix T for this to happen?

Solution: (a) A2 =
„

lim
k →∞

T k
«

2 = lim
k →∞

T 2k = A. (b) The only eigenvalues of A are 1 and

0. Moreover, A must be complete, since if v1,v2 are the first two vectors in a Jordan chain,

then Av1 = λv1, Av2 = λv2 + v1, with λ = 0 or 1, but A2v2 = λ2v1 + 2λv2 6= Av2 =
λv2 + v1, so there are no Jordan chains except for the ordinary eigenvectors. Therefore, A =

S diag (1, . . . , 1, 0, . . . 0) S−1 for some nonsingular matrix S. (c) If λ is an eigenvalue of T , then
either |λ | < 1, or λ = 1 and is a complete eigenvalue.

10.2.20. Prove that a matrix with all integer entries is convergent if and only if it is nilpotent,

i.e., Ak = O for some k. Give a nonzero example of such a matrix.

Solution: If v has integer entries, so does Akv for any k, and so the only way in which Akv → 0

is if Akv = 0 for some k. Now consider the basis vectors e1, . . . , en. Let ki be such that Akiei =

0. Let k = max{k1, . . . , kn}, so Akei = 0 for all i = 1, . . . , n. Then Ak I = Ak = O, and hence

A is nilpotent. Q.E.D. The simplest example is

 
0 1
0 0

!
.

♥ 10.2.21. Consider a second order iterative scheme u(k+2) = Au(k+1) + Bu(k). Define a gen-

eralized eigenvalue to be a complex number that satisfies det(λ2 I − λA − B) = 0. Prove
that the system is asymptotically stable if and only if all its generalized eigenvalues satisfy
|λ | < 1. Hint : Look at the equivalent first order system and use Exercise 1.9.23b.

Solution: The equivalent first order system v(k+1) = C v(k) for v(k) =

 
u(k)

u(k+1)

!
has co-

efficient matrix C =

 
O I
B A

!
. To compute the eigenvalues of C we form det(C − λ I ) =

det

 
−λ I I

B A − λ I

!
. Now use row operations to subtract appropriate multiples of the first

n rows from the last n, and the a series of row interchanges to conclude that

det(C − λ I ) = det

 
−λ I I

B + λA − λ2 I O

!
= ± det

 
B + λA − λ2 I O

−λ I I

!

= ± det(B + λA − λ2 I ).

Thus, the generalized eigenvalues are the same as the eigenvalues of C, and hence stability re-
quires they all satisfy |λ | < 1.
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♦ 10.2.22. Let p(t) be a polynomial. Assume 0 < λ < µ. Prove that there is a positive constant
C such that p(n) λn < C µn for all n > 0.

Solution: Set σ = µ/λ > 1. If p(x) = ck xk + · · · + c1 x + c0 has degree k, then p(n) ≤ ank

for all n ≥ 1 where a = max | ci |. To prove ank ≤ C σn it suffice to prove that k log n <

n log σ + log C − log a. Now h(n) = n log σ − k log n has a minimum when h′(n) log σ − k/n = 0,
so n = k/ log σ. The minimum value is h(k/ log σ) = k(1 − log(k/ log σ)). Thus, choosing
log C > log a + k(log(k/ log σ) − 1) will ensure the desired inequality. Q.E.D.

♦ 10.2.23. Prove the inequality (10.28) when T is incomplete. Use it to complete the proof of
Theorem 10.14 in the incomplete case. Hint : Use Exercises 10.1.36, 10.2.22.

Solution: According to Exercise 10.1.36, there is a polynomial p(x) such that

‖u
(k) ‖ ≤

X

i

|λi |
kpi(k) ≤ p(k) ρ(A)k.

Thus, by Exercise 10.2.22, ‖u(k) ‖ ≤ C σk for any σ > ρ(A). Q.E.D.

♦ 10.2.24. Suppose that M is a nonsingular matrix. (a) Prove that the implicit iterative scheme

M u(n+1) = u(n) is asymptotically stable if and only if all the eigenvalues of M are strictly
greater than one in magnitude: |µi | > 1. (b) Let K be another matrix. Prove that iter-

ative scheme M u(n+1) = Ku(n) is asymptotically stable if and only if all the generalized
eigenvalues of the matrix pair K, M , as in Exercise 8.4.8 are strictly less than one in magni-
tude: |λi | < 1.

Solution:
(a) Rewriting the system as u(n+1) = M−1u(n), stability requires ρ(M−1) < 1. The eigen-

values of M−1 are the reciprocals of the eigenvalues of M , and hence ρ(M−1) < 1 if and
only if 1/|µi | < 1. Q.E.D.

(b) Rewriting the system as u(n+1) = M−1Ku(n), stability requires ρ(M−1K) < 1. More-

over, the eigenvalues of M−1K coincide with the generalized eigenvalues of the pair; see
Exercise 9.5.32 for details.

10.2.25. Find all fixed points for the linear iterative systems with the following coefficient ma-

trices: (a)

 
.7 .3
.2 .8

!
, (b)

 
.6 1.0
.3 −.7

!
, (c)

0
B@
−1 −1 −4
−2 0 −4

1 −1 0

1
CA , (d)

0
B@

2 1 −1
2 3 −2

−1 −1 2

1
CA.

Solution: (a) all scalar multiples of

 
1
1

!
; (b)

 
0
0

!
; (c) all scalar multiples of

0
B@
−1
−2

1

1
CA;

(d) all linear combinations of

0
B@
−1

1
0

1
CA,

0
B@

1
0
1

1
CA.

10.2.26. (a) Discuss the stability of each fixed point and the asymptotic behavior(s) of the so-
lutions to the systems in Exercise 10.2.25. (b) Which fixed point, if any, does the solution

with initial condition u(0) = e1 converge to?

Solution:
(a) The eigenvalues are 1, 1

2 , so the fixed points are stable, while all other solutions go to a

unique fixed point at rate
“

1
2

”k
. When u(0) = ( 1, 0 )T , then u(k) →

“
3
5 , 3

5

”T
.
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(b) The eigenvalues are −.9, .8, so the origin is a stable fixed point, and every nonzero solu-

tion goes to it, most at a rate of .9k. When u(0) = ( 1, 0 )T , then u(k) → 0 also.
(c) The eigenvalues are −2, 1, 0, so the fixed points are unstable. Most solutions, specifi-

cally those with a nonzero component in the dominant eigenvector direction, become

unbounded. However, when u(0) = ( 1, 0, 0 )T , then u(k) = (−1,−2, 1 )T for k ≥ 1, and
the solution stays at a fixed point.

(d) The eigenvalues are 5 and 1, so the fixed points are unstable. Most solutions, specifi-
cally those with a nonzero component in the dominant eigenvector direction, become

unbounded, including that with u(0) = ( 1, 0, 0 )T .

10.2.27. Suppose T is a symmetric matrix that satisfies the hypotheses of Theorem 10.17 with
a simple eigenvalue λ1 = 1. Prove the solution to the linear iterative system has limiting

value lim
k →∞

u
(k) =

u(0) · v1

‖v1 ‖2
v1.

Solution: Since T is symmetric, its eigenvectors v1, . . . ,vn form an orthonormal basis of R
n.

Writing u(0) = c1v1 + · · · + cn vn, the coefficients are given by the usual orthogonality for-

mula (5.7): ci = u(0) · vi/‖v1 ‖2. Moreover, since λ1 = 1, while |λj | < 1 for j ≥ 2,

u
(k) = c1v1 + c2 λk

2v2 + · · · + cn λk
nvn −→ c1v1 =

u(0) · v1

‖v1 ‖2
v1. Q .E .D .

10.2.28. True or false: If T has a stable nonzero fixed point, then it is a convergent matrix.

Solution: False — T has an eigenvalue of 1, but convergence requires all eigenvalues less than 1
in modulus.

10.2.29. True or false: If every point u ∈ R
n is a fixed point, then they are all stable. Charac-

terize such systems.

Solution: True. In this case T = I and all solutions remain fixed.

♥ 10.2.30. (a) Under what conditions does the linear iterative system u(k+1) = T u(k) have

a period 2 solution, i.e., u(k+2) = u(k) 6= u(k+1)? Give an example of such a system.
(b) Under what conditions is there a unique period 2 solution? (c) What about a period
m solution?

Solution:
(a) The condition u(k+2) = T 2u(k) = u(k) implies that u(k) 6= 0 is an eigenvector of T 2

with eigenvalue of 1. Thus, u(k) is an eigenvector of T with eigenvalue −1; if the eigen-

value were 1 then u(k) = u(k+1), contrary to assumption. Thus, the iterative system has
a period 2 solution if and only if T has an eigenvalue of −1.

(b) T =

 
−1 0

0 2

!
has the period 2 orbit u(k) =

 
c(−1)k

0

!
for any c.

(c) The period 2 solution is never unique since any nonzero scalar multiple is also a period
2 solution.

(d) T must have an eigenvalue equal to a primitive mth root of unity.

♦ 10.2.31. Prove Theorem 10.18, (a) assuming T is complete; (b) for general T . Hint : Use Ex-
ercise 10.1.36.

Solution:
(a)

iter 9/9/04 554 c© 2004 Peter J. Olver



10.3. Matrix Norms and the Gerschgorin Theorem.mnorm

10.3.1. Compute the ∞ matrix norm of the following matrices. Which are guaranteed to be

convergent? (a)

0
B@

1
2

1
4

1
3

1
6

1
CA, (b)

0
B@

5
3

4
3

− 7
6 − 5

6

1
CA, (c)

0
B@

2
7 − 2

7

− 2
7

6
7

1
CA, (d)

0
B@

1
4

3
2

− 1
2

5
4

1
CA,

(e)

0
BBBB@

2
7

2
7 − 4

7

0 2
7

6
7

2
7

4
7

2
7

1
CCCCA

, (f )

0
B@

0 .1 .8
−.1 0 .1
−.8 −.1 0

1
CA, (g)

0
BBBB@

1 −fr23 −fr23

1 − 1
3 −1

1
3 − 2

3 0

1
CCCCA

,

0
BBBB@

1
3 0 0

− 1
3 0 1

3

0 2
3

1
3

1
CCCCA

.

Solution: (a) 3
4 , convergent. (b) 3, inconclusive. (c) 8

7 , inconclusive. (d) 7
4 , inconclusive. (e) 8

7 ,

inconclusive. (f ) .9, convergent. (g) 7
3 , inconclusive. (h) 1, inconclusive.

10.3.2. Compute the Euclidean matrix norm of each matrix in Exercise 10.3.1. Have your con-
vergence conclusions changed?

Solution: (a) .671855, convergent. (b) 2.5704, inconclusive. (c) .9755, convergent. (d) 1.9571,
inconclusive. (e) 1.1066, inconclusive. (f ) .8124, convergent. (g) 2.03426, inconclusive. (h) .7691,
convergent.

10.3.3. Compute the spectral radii of the matrices in Exercise 10.3.1. Which are convergent?
Compare your conclusions with those of Exercises 10.3.1 and 2.

Solution: (a) 2
3 , convergent. (b) 1

2 , convergent. (c) .9755, convergent. (d) 1.0308, divergent.

(e) .9437, convergent. (f ) .8124, convergent. (g) 2
3 , convergent. (h) 2

3 , convergent.

10.3.4. Let k be an integer and set Ak =

 
k −1

k2 −k

!
. Compute (a) ‖Ak ‖∞, (b) ‖Ak ‖2,

(c) ρ(Ak). (d) Explain why every Ak is a convergent matrix, even though their matrix
norms can be arbitrarily large. (e) Why does this not contradict Corollary 10.32?

Solution: (a) ‖Ak ‖∞ = k2 + k, (b) ‖Ak ‖2 = k2 + 1, (c) ρ(Ak) = 0. (d) Thus, a convergent
matrix can have arbitrarily large norm. (e) Because the norm will depend on k.

10.3.5. Find a matrix A such that (a) ‖A2 ‖∞ 6= ‖A ‖2
∞; (b) ‖A2 ‖2 6= ‖A ‖2

2.

Solution: When A =

 
1 1
0 1

!
, so A2 =

 
1 2
0 1

!
, then

(a) ‖A ‖∞ = 2, ‖A2 ‖∞ = 3. (b) ‖A ‖2 =

r
3+

√
5

2 = 1.6180, ‖A2 ‖2 =
q

3 + 2
√

2 = 2.4142.

10.3.6. Show that if | c | < 1/‖A ‖ then cA is a convergent matrix.

Solution: Since ‖ cA ‖ = | c | ‖A ‖ < 1.

♦ 10.3.7. Prove that the spectral radius function does not satisfy the triangle inequality by find-
ing matrices A, B such that ρ(A + B) > ρ(A) + ρ(B).

Solution: A =

 
0 1
0 0

!
, B =

 
0 1
1 0

!
, then ρ(A + B) =

√
2 > 0 + 1 = ρ(A) + ρ(B).

10.3.8. True or false: If all singular values of A satisfy σi < 1 then A is convergent.
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Solution: True — this implies ‖A ‖2 = max σi < 1.

10.3.9. Find a convergent matrix that has dominant singular value σ1 > 1.

Solution: If A =

0
B@

1
2 1

0 1
2

1
CA, then ρ(A) = 1

2 . The singular values of A are σ1 =

√
3+2

√
2

2 =

1.2071 and σ2 =

√
3−2

√
2

2 = .2071.

10.3.10. True or false: If B = S−1AS are similar matrices, then (a) ‖B ‖∞ = ‖A ‖∞,
(b) ‖B ‖2 = ‖A ‖2, (c) ρ(B) = ρ(A).

Solution: (a) False: if A =

 
0 1
0 1

!
, S =

 
1 2
0 1

!
, then B = S−1AS =

 
0 −2
0 1

!
and

‖B ‖∞ = 2 6= 1 = ‖A ‖∞; (b) false: same example has ‖B ‖2 =
√

5 6=
√

2 = ‖A ‖2; (c) true,
since A and B have the same eigenvalues.

10.3.11. Prove that the condition number of a nonsingular matrix is given by
κ(A) = ‖A ‖2 ‖A−1 ‖2.

Solution: By definition, κ(A) = σ1/σn. Now ‖A ‖2 = σ1. On the other hand, by Exercise

8.5.12, the singular values of A−1 are the reciprocals 1/σi of the singular values of A, and so

the largest one is ‖A−1 ‖2 = 1/σn. Q.E.D.

♦ 10.3.12. (i) Find an explicit formula for the 1 matrix norm ‖A ‖1. (ii) Compute the 1 matrix
norm of the matrices in Exercise 10.3.1, and discuss convergence.

Solution: (i) The 1 matrix norm is the maximum absolute column sum. (ii) (a) 5
6 , convergent.

(b) 17
6 , inconclusive. (c) 8

7 , inconclusive. (d) 11
4 , inconclusive. (e) 12

7 , inconclusive. (f ) .9,

convergent. (g) 7
3 , inconclusive. (h) 2

3 , convergent.

10.3.13. Prove directly from the axioms of Definition 3.12 that (10.40) defines a norm on the
space of n × n matrices.

Solution: If a1, . . . ,an are the rows of A, then the formula (10.40) can be rewritten as ‖A ‖∞ =
max{‖ai ‖1 }, i.e., the maximal 1 norm of the rows. Thus, by the properties of the 1-norm,

‖A + B ‖∞ = max{‖ai + bi ‖1 } ≤ max{‖ai ‖1 + ‖bi ‖1 }
≤ max{‖ai ‖1 } + max{‖bi ‖1 } = ‖A ‖∞ + ‖A ‖∞,

‖ cA ‖∞ = max{‖ cai ‖1 } = max{| c | ‖ai ‖1 } = | c | max{‖ai ‖1 } = | c | ‖A ‖∞.

Finally, ‖A ‖∞ ≥ 0 since we are maximizing non-negative quantities; moreover, ‖A ‖∞ = 0 if
and only if all its rows have ‖ai ‖1 = 0 and hence all ai = 0, which means A = O. Q.E.D.

♦ 10.3.14. Let K > 0 be a positive definite matrix. Characterize the matrix norm induced by

the inner product 〈x ,y 〉 = xT K y. Hint : Use Exercise 8.4.44.

Solution: ‖A ‖ = max{σ1, . . . , σn} is the largest generalized singular value, meaning σi =
q

λi

where λ1, . . . , λn are the generalized eigenvalues of the positive definite matrix pair AT K A and

K, satisfying AT K Avi = λK vi, or, equivalently, the eigenvalues of K−1AT K A.

10.3.15. Let A =

 
1 −1
2 1

!
. Compute the matrix norm ‖A ‖ using the following norms in R

2:

(a) the weighted ∞ norm ‖v ‖ = max{2 | v1 |, 3 | v2 |}; (b) the weighted 1 norm ‖v ‖ =

2 | v1 | + 3 | v2 |; (c) the weighted inner product norm ‖v ‖ =
q

2v2
1 + 3v2

2 ; (d) the norm
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associated with the positive definite matrix K =

 
2 −1

−1 2

!
.

Solution:
(a)

♥ 10.3.16. The Frobenius norm of an n × n matrix A is defined as ‖A ‖F =

vuuut
nX

i,j =1

a2
ij . Prove

that this defines a matrix norm by checking the three norm axioms plus the multiplicative
inequality (10.33).

Solution: If we identify an n × n matrix with a vector in R
n2

, then the Frobenius norm is the
same as the ordinary Euclidean norm, and so the norm axioms are immediate. To check the

multiplicative property, let rT
1 , . . . , rT

n denote the rows of A and c1, . . . , cn the columns of B, so

‖A ‖F =

vuut
nX

i=1

‖ ri ‖
2 , ‖B ‖F =

vuuut
nX

j =1

‖ cj ‖
2 . Then, setting C = AB, we have

‖C ‖F =

vuuut
nX

i,j =1

c2ij =

vuuut
nX

i,j =1

(rT
i cj)

2 ≤
vuuut

nX

i,j =1

‖ ri ‖
2‖ cj ‖

2 = ‖A ‖F ‖B ‖F ,

where we used Cauchy–Schwarz for the inequality. Q.E.D.

10.3.17. Let A be an n × n matrix with singular value vector σ = (σ1, . . . , σr). Prove that
(a) ‖σ ‖∞ = ‖A ‖2; (b) ‖σ ‖2 = ‖A ‖F , the Frobenius norm of Exercise 10.3.16.
Remark : ‖σ ‖1 also defines a useful matrix norm, known as the Ky Fan norm.

Solution:
(a) This is a restatement of Proposition 10.28.

(b) ‖σ ‖2
2 =

nX

i=1

σ2
i =

nX

i=1

λi = tr(AT A) =
nX

i,j =1

a2
ij = ‖A ‖2

F .

10.3.18. Explain why ‖A ‖ = max | aij | defines a norm on the space of n × n matrices. Show

by example that this is not a matrix norm, i.e., (10.33) is not necessarily valid.

Solution: If we identify a matrix A with a vector in R
n2

, then this agrees with the ∞ norm

on R
n2

and hence satisfies the norm axioms. When A =

 
1 1
0 1

!
, then A2 =

 
1 2
0 1

!
, and so

‖A2 ‖ = 2 > 1 = ‖A ‖2.

10.3.19. Prove that the closed curve parametrized in (10.37) is an ellipse. What are its semi-
axes?

Solution:

♦ 10.3.20. If V is a finite-dimensional normed vector space, then it can be proved, [63], that a

series
∞X

n=1

vi converges to v ∈ V if and only if the series of norms converges:
∞X

n=1

‖vi ‖ < ∞.

Use this fact to prove that the exponential matrix series (9.45) converges.

Solution: etA =
∞X

n=0

tn

n!
An and the series of norms is

∞X

n=0

| t |n
n!

‖A ‖n = e| t | ‖A ‖ is the standard

scalar exponential series, which, by the ratio or root tests, [3], converges for all t. Q.E.D.

10.3.21. (a) Use Exercise 10.3.20 to prove that the geometric matrix series
∞X

n=0

An converges
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whenever ρ(A) < 1. Hint : Apply Corollary 10.32. (b) Prove that the sum is ( I − A)−1.
How do you know I − A is invertible?

Solution: (a) Choosing a matrix norm such that a = ‖A ‖ < 1, the norm series is bounded by a
convergent geometric series:

∞X

‖ ‖=0

An ≤
∞X

‖ ‖=0

An =
∞X

n=0

an =
1

1 − a
.

Therefore, the matrix series converges. (b) Moreover,

( I − A)
∞X

n=0

An =
∞X

n=0

An −
∞X

n=0

An+1 = I ,

since all other terms cancel. I −A is invertible if and only if 1 is not an eigenvalue of A, and we
are assuming all eigenvalues are less than 1 in magnitude.

10.3.22. For each of the following matrices (i) Find all Gerschgorin disks; (ii) plot the Ger-
schgorin domain in the complex plane; (iii) compute the eigenvalues and confirm the truth
of the Circle Theorem 10.34.

(a)

 
1 −2

−2 1

!
, (b)

0
B@

1 − 2
3

1
2 − 1

6

1
CA, (c)

 
2 3

−1 0

!
, (d)

0
B@

3 −1 0
−1 2 −1

0 −1 3

1
CA,

(e)

0
B@
−1 3 −3

2 2 −7
0 3 −4

1
CA, (f )

0
BB@

1
2 0 0

0 0 1
3

1
4

1
6 0

1
CCA, (g)

0
B@

0 1 0
0 1 1
0 −1 1

1
CA, (h)

0
BBB@

3 2 0 0
1 2 0 0
0 0 0 1
0 0 2 1

1
CCCA.

Solution:
(a) Gerschgorin disks: | z − 1 | ≤ 2; eigenvalues: 3,−1.

(b) Gerschgorin disks: | z − 1 | ≤ 2
3 ,
˛̨
˛ z + 1

6

˛̨
˛ ≤ 1

2 ; eigenvalues: 1
2 , 1

3 .

(c) Gerschgorin disks: | z − 2 | ≤ 3, | z | ≤ 1; eigenvalues: 1 ± i
√

2.
(d) Gerschgorin disks: | z − 3 | ≤ 1, | z − 2 | ≤ 2; eigenvalues: 4, 3, 1.

(e) Gerschgorin disks: | z + 1 | ≤ 6, | z − 2 | ≤ 9, | z + 4 | ≤ 3; eigenvalues: −1,−1 ± i
√

6.

(f ) Gerschgorin disks: z = 1
2 , | z | ≤ 1

3 , | z | ≤ 5
12 ; eigenvalues: 1

2 ,± 1
3
√

2
.

(g) Gerschgorin disks: | z | ≤ 1, | z − 1 | ≤ 1; eigenvalues: 0, 1 ± i .
(h) Gerschgorin disks: | z − 3 | ≤ 2, | z − 2 | ≤ 1, | z | ≤ 1, | z − 1 | ≤ 2;

eigenvalues: 1
2 ±

√
5

2 , 5
2 ±

√
5

2 .

10.3.23. True or false: The Gerschgorin domain of the transpose of a matrix AT is the same
as the Gerschgorin domain of the matrix A, that is DAT = DA.

Solution: False. Almost any non-symmetric matrix, e.g.,

 
2 1
0 1

!
provides a counterexample.

♦ 10.3.24. (i) Explain why the eigenvalues of A must lie in its refined Gerschgorin domain D∗
A =

DAT ∩ DA. (ii) Find the refined Gerschgorin domains for each of the matrices in Exercise
10.3.22 and confirm the result in part (i).

Solution:
(i) Because A and its transpose AT have the same eigenvalues, which must therefore belong

to both DA and DAT .
(ii)
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(a) Gerschgorin disks: | z − 1 | ≤ 2; eigenvalues: 3,−1.

(b) Gerschgorin disks: | z − 1 | ≤ 1
2 ,
˛̨
˛ z + 1

6

˛̨
˛ ≤ 2

3 ; eigenvalues: 1
2 , 1

3 .

(c) Gerschgorin disks: | z − 2 | ≤ 1, | z | ≤ 3; eigenvalues: 1 ± i
√

2.
(d) Gerschgorin disks: | z − 3 | ≤ 1, | z − 2 | ≤ 2; eigenvalues: 4, 3, 1.

(e) Gerschgorin disks: | z + 1 | ≤ 2, | z − 2 | ≤ 6, | z + 4 | ≤ 10; eigenvalues: −1,−1 ± i
√

6.

(f ) Gerschgorin disks: | z − 1
2 | ≤ 1

4 , | z | ≤ 1
6 , | z | ≤ 1

3 ; eigenvalues: 1
2 ,± 1

3
√

2
.

(g) Gerschgorin disks: z = 0, | z − 1 | ≤ 2, | z − 1 | ≤ 1; eigenvalues: 0, 1 ± i .
(h) Gerschgorin disks: | z − 3 | ≤ 1, | z − 2 | ≤ 2, | z | ≤ 2, | z − 1 | ≤ 1;

eigenvalues: 1
2 ±

√
5

2 , 5
2 ±

√
5

2 .

♦ 10.3.25. Let A be a square matrix. Prove that max{0, t} ≤ ρ(A) ≤ s, where s = max{s1, . . . , sn}
is the maximal absolute row sum of A, as defined in (10.39), and t = min

n
| aii | − ri

o
, with

ri given by (10.44).

Solution: By elementary geometry, all points z in a closed disk of radius r centered at z = a
satisfy max{0, | a | − r} ≤ | z | ≤ | a | + r. Thus, every point in the ith Gerschgorin disk satisfies
max{0, | aii | − ri } ≤ | z | ≤ | aii | + ri = si. Since every eigenvalue lies in such a disk, they all
satisfy max{0, t} ≤ |λi | ≤ s, and hence ρ(A) = max{|λi |} does too. Q.E.D.

10.3.26. (a) Suppose that every entry of the n × n matrix A is bounded by | aij | <
1

n
. Prove

that A is a convergent matrix. Hint : Use Exercise 10.3.25. (b) Produce a matrix of size

n × n with one or more entries satisfying | aij | =
1

n
that is not convergent.

Solution:

(a) The absolute row sums of A are bounded by si =
nX

j =1

| aij | < 1, and so ρ(A) ≤ s =

max si < 1 by Exercise 10.3.25.

(b) A =

0
B@

1
2

1
2

1
2

1
2

1
CA has eigenvalues 0, 1 and hence ρ(A) = 1.

10.3.27. Suppose the largest entry (in modulus) of A is | aij | = a?. How large can its radius of

convergence be?

Solution: Using Exercise 10.3.25, we find ρ(A) ≤ s = max
n

si

o
≤ n a?.

10.3.28. Write down an example of a diagonally dominant matrix that is also convergent.

Solution: Any diagonal matrix whose diagonal entries satisfy 0 < | aii | < 1.

10.3.29. True or false: (a) A positive definite matrix is diagonally dominant. (b) A diago-
nally dominant matrix is positive definite.

Solution: Both false.

 
1 2
2 5

!
is a counterexample to (a), while

 
1 0
0 −1

!
is a counterexample

to (b). However, see Exercise 10.3.30.

♦ 10.3.30. Prove that if K is symmetric, diagonally dominant, and each diagonal entry is posi-
tive, then K is positive definite.

Solution: The eigenvalues of K are real by Theorem 8.20. The ith Gerschgorin disk is centered
at kii > 0 and by diagonal dominance its radius is less than the distance from its center to the
origin. Therefore, all eigenvalues of K must be positive and hence, by Theorem 8.23, K > 0.
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10.3.31. (a) Write down an invertible matrix A whose Gerschgorin domain contains 0. (b) Can
you find an example which is also diagonally dominant?

Solution: (a) A =

 
1 2
2 1

!
has Gerschgorin domain | z − 1 | ≤ 2. (b) No — see the proof of

Proposition 10.37.

10.3.32. Prove that if A is diagonally dominant and each diagonal entry is negative, then the
zero equilibrium solution to the linear system of ordinary differential equations

¦

u = Au is
asymptotically stable.

Solution: The ith Gerschgorin disk is centered at aii < 0 and, by diagonal dominance, its radius
is less than the distance to the origin. Therefore, all eigenvalues of A lie in the left half plane:
Re λ < 0, which, by Theorem 9.15, implies asymptotic stability of the differential equation.

10.4. Markov Processes.MP

10.4.1. Determine if the following matrices are regular transition matrices. If so, find the as-

sociated probability eigenvector. (a)

0
B@

1
2

1
3

3
4

2
3

1
CA, (b)

0
B@

1
4

3
4

2
3

1
3

1
CA, (c)

0
B@

1
4

2
3

3
4

1
3

1
CA, (d)

0
B@

0 1
5

1 4
5

1
CA,

(e)

0
BBBB@

0 1 0

1 0 0

0 0 1

1
CCCCA

, (f )

0
B@

.3 .5 .2

.3 .2 .5

.4 .3 .3

1
CA, (g)

0
B@

.1 .5 0

.1 .2 1

.8 .3 0

1
CA, (h)

0
B@

.1 .5 .4

.4 .1 .3

.3 0 .7

1
CA, (i)

0
BBBB@

1
2

1
2

1
3

1
2 0 1

3

0 1
2

1
3

1
CCCCA

,

(j)

0
BBB@

0 .2 0 1
.5 0 .3 0
0 .8 0 0
.5 0 .7 0

1
CCCA, (k)

0
BBB@

.1 .2 .3 .4

.2 .5 .3 .1

.3 .3 .1 .3

.4 .1 .3 .2

1
CCCA, (l)

0
BBB@

0 .6 0 .4
.5 0 .3 .1
0 .4 0 .5
.5 0 .7 0

1
CCCA, (m)

0
BBB@

.1 .3 .7 0

.1 .2 0 .8
0 .5 0 .2
.8 0 .3 0

1
CCCA.

Solution:
(a) Not a transition matrix;
(b) not a transition matrix;

(c) regular transition matrix:
“

8
17 , 9

17

”T
;

(d) regular transition matrix:
“

1
6 , 5

6

”T
;

(e) not a regular transition matrix;

(f ) regular transition matrix:
“

1
3 , 1

3 , 1
3

”T
;

(g) regular transition matrix: ( .2415, .4348, .3237 )T ;
(h) not a transition matrix;

(i) regular transition matrix:
“

6
13 , 4

13 , 3
13

”T
= ( .4615, .3077, .2308 )T ;

(j) not a regular transition matrix;
(k) not a transition matrix;

(l) regular transition matrix (A4 has all positive entries):
“

251
1001 , 225

1001 , 235
1001 , 290

1001

”T
=

( .250749, .224775, .234765, .28971 )T ;

(m) regular transition matrix: ( .2509, .2914, .1977, .2600 )T .
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10.4.2. A study has determined that, on average, the occupation of a boy depends on that of
his father. If the father is a farmer, there is a 30% chance that the son will be a blue collar
laborer, a 30% chance he will be a white collar professional, and a 40% chance he will also
be a farmer. If the father is a laborer, there is a 30% chance that the son will also be one,
a 60% chance he will be a professional, and a 10% chance he will be a farmer. If the father
is a professional, there is a 70% chance that the son will also be one, a 25% chance he will
be a laborer, and a 5% chance he will be a farmer. (a) What is the probability that the
grandson of a farmer will also be a farmer? (b) In the long run, what proportion of the
male population will be farmers?

Solution: (a) 20.5%; (b) 9.76% farmers, 26.83% laborers, 63.41% professionals

10.4.3. The population of an island is divided into city and country residents. Each year, 5%
of the residents of the city move to the country and 15% of the residents of the country
move to the city. In 2003, 35,000 people live in the city and 25,000 in the country. Assum-
ing no growth in the population, how many people will live in the city and how many will
live in the country between the years 2004 and 2008? What is the eventual population dis-
tribution of the island?

Solution: 2004: 37,000 city, 23,000 country. 2005: 38,600 city, 21,400 country. 2006: 39,880 city,
20,120 country. 2007: 40,904 city, 19.096 country. 2008: 41,723 city, 18,277 country. Eventual:
45,000 in the city and 15,000 in the country.

10.4.4. A student has the habit that if she doesn’t study one night, she is 70% certain of study-
ing the next night. Furthermore, the probability that she studies two nights in a row is
50%. How often does she study in the long run?

Solution: 58.33% of the nights.

10.4.5. A traveling salesman visits the three cities of Atlanta, Boston, and Chicago. The ma-

trix

0
B@

0 .5 .5
1 0 .5
0 .5 0

1
CA describes the transition probabilities of his trips. Describe his travels in

words, and calculate how often he visits each city on average.

Solution: When in Atlanta he always goes to Boston; when in Boston he has a 50% probability
of going to either Atlanta or Chicago; when in Chicago he has a 50% probability of going to
either Atlanta or Boston. Note that the transition matrix is regular because A4 has all positive
entries. In the long run, his visits average: Atlanta: 33.33%, Boston: 44.44%, Chicago: 22.22%.

10.4.6. A business executive is managing three branches, labeled A, B and C, of a corporation.
She never visits the same branch on consecutive days. If she visits branch A one day, she
visits branch B the next day. If she visits either branch B or C that day, then the next day
she is twice as likely to visit branch A as to visit branch B or C. Explain why the resulting
transition matrix is regular. Which branch does she visit the most often in the long run?

Solution: The transition matrix is

0
BBBB@

0 2
3

2
3

1 0 1
3

0 1
3 0

1
CCCCA

. She visits branch A 40% of the time, branch B

45% and branch C: 15%.

10.4.7. A certain plant species has either red, pink or white flowers, depending on its geno-
type. If you cross a pink plant with any other plant, the probability distribution of the

offspring are prescribed by the transition matrix T =

0
B@

.5 .25 0

.5 .5 .5
0 .25 .5

1
CA. On average, if you
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continue only crossing with pink plants, what percentage of the three types of flowers would
you expect to see in your garden?

Solution: 25% red, 50% pink, 25% pink.

10.4.8. Explain why the irregular Markov process with transition matrix T =

 
0 1
1 0

!
does

not reach a steady state. Use a population model to interpret what is going on.

Solution: If u(0) = ( a, b )T is the initial state vector, then the subsequent state vectors switch

back and forth between ( b, a )T and ( a, b )T . At each step in the process, all of the population
in state 1 goes to state 2 and vice versa, so the system never settles down.

10.4.9. A genetic model describing inbreeding, in which mating takes place only between in-

dividuals of the same genotype, is given by the Markov process u(n+1) = T u(n), where

T =

0
BBBB@

1 1
4 0

0 1
2 0

0 1
4 1

1
CCCCA

is the transition matrix and u(n) =

0
B@

pn
qn
rn

1
CA, whose entries are, respec-

tively, the proportion of populations of genotype AA, Aa, aa in the nth generation. Find
the solution to this Markov process and analyze your result.

Solution: This is not a regular transition matrix, so we need to analyze the iterative process di-
rectly. The eigenvalues of A are λ1 = λ2 = 1 and λ3 = 1

2 , with corresponding eigenvectors

v1 =

0
B@

1
0
0

1
CA, v2 =

0
B@

0
0
1

1
CA, and v3 =

0
B@

1
−2

1

1
CA. Thus, the solution with initial value u(0) =

0
B@

p0
q0
r0

1
CA is

u
(n) =

“
p0 + 1

2 q0

”
0
B@

1
0
0

1
CA+

“
1
2 q0 + r0

”
0
B@

0
0
1

1
CA− q0

2k+1

0
B@

1
−2

1

1
CA −→

0
BBBB@

p0 + 1
2 q0

0

1
2 q0 + r0

1
CCCCA

.

Therefore, this breeding process eventually results in a population with individuals of genotypes
AA and aa only, the proportions of each depending upon the initial population.

♦ 10.4.10. Let T be a regular transition matrix with probability eigenvector v. Prove that

lim
k→∞

T k = (v v . . . v ) is a matrix with every column equal to v.

Solution: The ith column of T k is u
(k)
i = T kei → v by Theorem 10.40. Q.E.D.

10.4.11. Find lim
k→∞

T k when T =

0
B@

.8 .1 .1

.1 .8 .1

.1 .1 .8

1
CA.

Solution: Use Exercise 10.4.10:

0
BBBB@

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
CCCCA

.

10.4.12. Prove that, for all 0 ≤ p, q ≤ 1 with p + q > 0, the probability eigenvector of the

transition matrix T =

 
1 − p q

p 1 − q

!
is v =

 
q

p + q
,

p

p + q

!T

.

Solution: First, v is a probability vector since the sum of its entries is
p

p + q
+

p

p + q
= 1. More-
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over, Av =

 
(1 − p)q + q p

p + q

pq + (1 − q)p

p + q

!
=

 
q

p + q

p

p + q

!
= v, proving it is an eigen-

vector for eigenvalue 1.

10.4.13. A transition matrix is called doubly stochastic if both its row and column sums are
equal to 1. What is the limiting probability state of a Markov chain with doubly stochastic
transition matrix?

Solution: All equal probabilities: z =
“

1
n , . . . , 1

n

”T
.

10.4.14. Describe the final state of a Markov chain with symmetric transition matrix T = T T .

Solution: z =
“

1
n , . . . , 1

n

”T
.

10.4.15. True or false: If T and T T are both transition matrices, then T = T T .

Solution: False:

0
B@

.3 .5 .2

.3 .2 .5

.4 .3 .3

1
CA is a counterexample.

10.4.16. True or false: If T is a transition matrix, so is T−1.

Solution: False. For instance, if T =

0
B@

1
2

1
3

1
2

2
3

1
CA, then T−1 =

 
4 −2

−3 3

!
, while T =

0
B@

1
2

1
2

1
2

1
2

1
CA is

not even invertible.

10.4.17. True or false: The set of all probability vectors forms a subspace of R
n.

Solution: False. For instance, 0 is not a probability vector.

10.4.18. Multiple Choice: Every probability vector in R
n lies on the unit sphere for the

(a) 1 norm, (b) 2 norm, (c) ∞ norm, (d) all of the above, (e) none of the above.

Solution: The 1 norm.

10.4.19. True or false: Every probability eigenvector of a regular transition matrix has eigen-
value equal to 1.

Solution: ???????? False.

10.4.20. (a) Construct an example of a irregular transition matrix. (b) Construct an example
of a regular transition matrix that has one or more zero entries.

Solution: (a)

 
0 1
1 0

!
; (b)

 
0 1

2

1 1
2

!
.

♦ 10.4.21. Let T be a transition matrix. Prove that if u is a probability vector, so is v = T u.

Solution: The ith entry of u(k+1) is u
(k+1)
i =

nX

j =1

tij u
(k)
j . Since each tij ≥ 0 and u

(k)
j ≥ 0, the

sum u
(k+1)
i ≥ 0 also. Moreover,

nX

i=1

u
(k+1)
i =

nX

i,j =1

tij u
(k)
j =

nX

j =1

u
(k)
j = 1 because all the

column sums of T are equal to 1, and u(k) is a probability vector. Q.E.D.

♦ 10.4.22. (a) Prove that if T and S are transition matrices, so is their product T S. (b) Prove

that if T is a transition matrix, so is T k for any k ≥ 0.

Solution:
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(a) The columns of T S are obtained by multiplying T by the columns of S. Since S is a
transition matrix, its columns are probability vectors. Exercise 10.4.21 shows that each
column of T S is also a probability vector, and so the product is a transition matrix.

(b) This follows by induction from part (a), where we write T k+1 = T T k.

♣ 10.4.23. A bug crawls along the edges of the pictured square lattice with
nine vertices. Upon arriving at a vertex, there is an equal probabil-
ity of it choosing any edge to leave the vertex or stayilng at the ver-
tex. Set up the Markov chain described by the bug’s motion, and de-
termine how often, on average, it visits each vertex.

Solution:

♣ 10.4.24. (a) Repeat Exercise 10.4.23 for a bug on a square lattice with four vertices to a side.
(b) Experiment with a square lattice with n vertices on each side for n large. Do you no-
tice any form of limiting behavior?

Solution:

♣ 10.4.25. (a) Repeat Exercise 10.4.23 for the pictured trian-
gular lattices. (b) Investigate what happens as the num-
ber of vertices in the triangular lattice gets larger and larger.

Solution:

10.5. Iterative Solution of Linear Algebraic Systems.itsol

10.5.1. (a) Find the spectral radius of the matrix T =

 
1 1

−1 − 7
6

!
. (b) Predict the long term

behavior of the iterative system u(k+1) = T u(k) + b where b =

 
−1

2

!
in as much detail as

you can.

Solution:
(a) The eigenvalues are − 1

2 , 1
3 , so ρ(T ) = 1

2 .

(b) The iterates will converge to the fixed point
“
− 1

6 , 1
”T

at rate 1
2 . Asymptotically, they

come in to the fixed point along the direction of the dominant eigenvector (−3, 2 )T .

10.5.2. Answer Exercise 10.5.1 when (a) T =

0
B@

1 − 1
2

− 1 3
2

1
CA, b =

 
0
1

!
;

(b) T =

0
BBBB@

1
4

1
4 0

0 0 1
4

1 1 1
4

1
CCCCA

, b =

0
B@

1
−1

3

1
CA; (c) T =

0
B@
−.05 .15 .15

.35 .15 −.35
−.2 −.2 .3

1
CA, b =

0
B@
−1.5

1.6
1.7

1
CA.

Solution:
(a) ρ(T ) = 2. The iterates diverge: ‖u(k) ‖ → ∞ at a rate of 2.

(b) ρ(T ) = 3
4 . The iterates converge to the fixed point ( 1.6, 0.8, 7.2 )T at a rate 3

4 , along the
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dominant eigenvector direction ( 1, 2, 6 )T .

(c) ρ(T ) = 1
2 . The iterates converge to the fixed point (−1, .4, 2.6 )T at a rate 1

2 , along the

dominant eigenvector direction ( 0,−1, 1 )T .

10.5.3. Which of the following systems have a diagonally dominant coefficient matrix?

(a)
5x − y = 1,

−x + 3y = −1;
(b)

1
2 x + 1

3 y = 1,

1
5 x + 1

4 y = 6;
(c)

−5x + y = 3,

−3x + 2y = −2;
(d)

−2x + y + z = 1,

−x + 2y − z = −2,

x − y + 3z = 1;

(e)

−x + 1
2 y + 1

3 z = 1,

1
3 x + 2y + 3

4 z = −3,

2
3 x + 1

4 y − 3
2 z = 2;

(f )

x − 2y + z = 1,

−x + 2y + z = −1,

x + 3y − 2z = 3;

(g)

−4x + 2y + z = 2,

−x + 3y + z = −1,

x + 4y − 6z = 3.

Solution: (a,b,e,g) are diagonally dominant.

♠ 10.5.4. For the diagonally dominant systems in Exercise 10.5.3, starting with the initial guess
x = y = z = 0, compute the solution to 2 decimal places using the Jacobi method. Check
your answer by solving the system directly by Gaussian Elimination.

Solution: (a) x = 1
7 = .142857, y = − 2

7 = − .285714; (b) x = −30, y = 48;
(e) x = −1.9172, y = − .339703, z = −2.24204;
(g) x = − .84507, y = − .464789, z = − .450704;

♠ 10.5.5. (a) Do any of the non-diagonally dominant systems in Exercise 10.5.3 lead to conver-
gent Jacobi schemes? Hint : Check the spectral radius of the Jacobi matrix. (b) For the
convergent systems in Exercise 10.5.3, starting with the initial guess x = y = z = 0, com-
pute the solution to 2 decimal places using the Jacobi method, and check your answer by
solving the system directly by Gaussian Elimination.

Solution: (c) Jacobi spectral radius = .547723, so Jacobi converges to the solution

x = 8
7 = 1.142857, y = 19

7 = 2.71429;
(d) Jacobi spectral radius = .5, so Jacobi converges to the solution

x = − 10
9 = −1.1111, y = − 13

9 = −1.4444, z = 2
9 = .2222;

(f ) Jacobi spectral radius = 1.1180, so Jacobi does not converge.

10.5.6. The following linear systems have positive definite coefficient matrices. Use the Jacobi

method starting with u(0) = 0 to find the solution to 4 decimal place accuracy.

(a)

 
3 −1

−1 5

!
u =

 
2
1

!
, (b)

 
2 1
1 1

!
u =

 
−3

1

!
, (c)

0
B@

6 −1 −3
−1 7 4
−3 4 9

1
CAu =

0
B@
−1
−2

7

1
CA,

(d)

0
B@

3 −1 0
−1 2 1

0 1 5

1
CAu =

0
B@

1
−5

0

1
CA, (e)

0
BBB@

5 1 1 1
1 5 1 1
1 1 5 1
1 1 1 5

1
CCCAu =

0
BBB@

4
0
0
0

1
CCCA, (f )

0
BBB@

3 1 0 −1
1 3 1 0
0 1 3 1

−1 0 1 3

1
CCCAu =

0
BBB@

1
2
0

−1

1
CCCA.

Solution: (a) u =

 
.7857
.3571

!
, (b) u =

 
−4

5

!
, (c) u =

0
B@

.3333
−1.0000

1.3333

1
CA,

(d) u =

0
B@

.7273
−3.1818

.6364

1
CA, (e) u =

0
BBB@

.8750
−.1250
−.1250
−.1250

1
CCCA, (f ) u =

0
BBB@

0.
.7143

−.1429
−.2857

1
CCCA.

♣ 10.5.7. Let A be the n × n tridiagonal matrix with all its diagonal entries equal to c and all
1’s on the sub- and super-diagonals. (a) For which values of c is A diagonally dominant?
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(b) For which values of c does the Jacobi iteration for Ax = b converge to the solution?
What is the rate of convergence? Hint : Use Exercise 8.2.47. (c) Set c = 2 and use the Ja-
cobi method to solve the linear systems K u = e1, for n = 5, 10, and 20. Starting with an
initial guess of 0, how many Jacobi iterations does it take to obtain 3 decimal place accu-
racy? Does the convergence rate agree with what you computed in part (c)?

Solution: (a) | c | > 2. (b) If c = 0, then D = c I = O and the Jacobi iteration isn’t even

defined. Otherwise, T = −D−1(L + U) is tridiagonal with diagonal entries all 0 and sub-
and super-diagonal entries equal to −1/c. According to Exercise 8.2.47, the eigenvalues are

− 2

c
cos

kπ

n + 1
for k = 1, . . . , n, and so the spectral radius is ρ(T ) =

2

| c | cos
1

n + 1
. Thus, con-

vergence requires | c | > 2 cos
1

n + 1
; in particular, | c | ≥ 2 will ensure convergence for any n.

(c) For n = 5 the solution is u = ( .8333,− .6667, .5000,− .3333, .1667 )T with a convergence

rate of ρ(T ) = cos 1
6 π = .8660. It takes 51 iterations to obtain 3 decimal place accuracy, while

log(.5 × 10−4)/ log ρ(T ) ≈ 53.
For n = 10 the solution is u = (.9091,− .8182, .7273,− .6364, .5455,− .4545, .3636,− .2727,

.1818,− .0909)T with a convergence rate of cos 1
11 π = .9595. It takes 173 iterations to obtain 3

decimal place accuracy, while log(.5 × 10−4)/ log ρ(T ) ≈ 184.
For n = 20 the solution is u = (.9524,− .9048, .8571,− .8095, .7619,− .7143, .6667,− .6190,

.5714,− .5238, .4762,− .4286, .3810,− .3333, .2857,− .2381, .1905,− .1429, .0952,− .0476)T with a

convergence rate of cos 1
21 π = .9888. It takes 637 iterations to obtain 3 decimal place accuracy,

while log(.5 × 10−4)/ log ρ(T ) ≈ 677.

10.5.8. Prove that 0 6= u ∈ ker A if and only if u is a eigenvector of the Jacobi iteration matrix
with eigenvalue 1. What does this imply about convergence?

Solution: If Au = 0, then D u = − (L + U)u, and hence T u = −D−1(L + U)u = u. Therefore
u is a eigenvector for T with eigenvalue 1. Therefore, ρ(T ) ≥ 1, which implies that T is not a
convergent matrix.

♦ 10.5.9. Prove that if A is a nonsingular coefficient matrix, then one can always arrange that
all its diagonal entries are nonzero by suitably permuting its rows.

Solution: If A is nonsingular, then at least one of the terms in the general determinant expan-
sion (1.84) is nonzero. If a1,π(1) a2,π(2) · · · an,π(n) 6= 0 then each ai,π(i) 6= 0. Applying the

permutation π to the rows of A will produce a matrix whose diagonal entries are all nonzero.

10.5.10. Consider the iterative system (10.53) with spectral radius ρ(T ) < 1. Explain why it
takes roughly −1/ log10 ρ(T ) iterations to produce one further decimal digit of accuracy in
the solution.

Solution: Assume, for simplicity, that T is complete with a single dominant eigenvalue λ1 so

that ρ(T ) = |λ1 |. We expand the initial error e(0) = c1v1 + · · · + cn vn in terms of its

eigenvectors. Then e(k) = T ke(0) = c1 λk
1 v1 + · · · + cn λk

n vn, which, for k À 0, is approx-

imately e(k) ≈ c1 λk
1 v1. Thus, ‖ e(k+j) ‖ ≈ ρ(T )j ‖ e(k) ‖. In particular, if at iteration num-

ber k we have m decimal places of accuracy, so ‖ e(k) ‖ ≤ .5 × 10−m, then, approximately,

‖ e(k+j) ‖ ≤ .5 × 10−m+j log10 ρ(T ) = .5 × 10−m−1 provided j = −1/ log10 ρ(T ). Q.E.D.

10.5.11. True or false: If a system Au = b has diagonally dominant coefficient matrix A,
then the equivalent system obtained by applying an elementary row operation to A also has
diagonally dominant coefficient matrix.

Solution: False for elementary row operations of types 1 & 2, but true for those of type 3.
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♥ 10.5.12. Consider the linear system Ax = b, where A =

0
B@

4 1 −2
−1 4 −1

1 −1 4

1
CA , b =

0
B@

4
0
4

1
CA.

(a) First, solve the equation directly by Gaussian Elimination. (b) Using the initial ap-

proximation x(0) = 0, carry out three iterations of the Jacobi algorithm to compute x(1),x(2)

and x(3). How close are you to the exact solution? (c) Write the Jacobi iteration in the

form x(k+1) = T x(k) + c. Find the 3 × 3 matrix T and the vector c explicitly. (d) Using

the initial approximation x(0) = 0, carry out three iterations of the Gauss–Seidel algorithm.
Which is a better approximation to the solution — Jacobi or Gauss–Seidel? (e) Write the

Gauss–Seidel iteration in the form x(k+1) = eT x(k) + c. Find the 3 × 3 matrix T and the
vector c explicitly. (f ) Determine the spectral radius of the Jacobi matrix T , and use this
to prove that the Jacobi method iteration will converge to the solution of Ax = b for any

choice of the initial approximation x(0). (g) Determine the spectral radius of the Gauss–
Seidel matrix T . Which method converges faster? (h) For the faster method, how many
iterations would you expect to need to obtain 5 decimal place accuracy? (i) Test your
prediction by computing the solution to the desired accuracy.

Solution:

(a) x =

0
BB@

7
23
6
23
40
23

1
CCA =

0
B@

.30435

.26087
1.73913

1
CA;

(b) x
(1) =

0
B@
−.5
−.25
1.75

1
CA, x

(2) =

0
B@

.4375

.0625
1.8125

1
CA, x

(3) =

0
B@

.390625
.3125

1.65625

1
CA, with error e(3) =

0
B@

.0862772

.0516304
−.0828804

1
CA;

(c) x(k+1) =

0
BB@

0 − 1
4

1
2

1
4 0 − 1

4

− 1
4 − 1

4 0

1
CCAx(k) +

0
BB@

− 1
2

− 1
4
7
4

1
CCA;

(d) x
(1) =

0
B@
−.5
−.375
1.78125

1
CA, x

(2) =

0
B@

.484375

.316406
1.70801

1
CA, x

(3) =

0
B@

.274902

.245728
1.74271

1
CA; the error at the third

iteration is e(3) =

0
B@
−.029446
−.015142

.003576

1
CA, which is about 30% of the Jacobi error;

(e) x(k+1) =

0
BB@

0 − 1
4

1
2

0 − 1
16

3
8

0 3
64 − 1

32

1
CCAx(k) +

0
BB@

− 1
2

− 3
8

57
32

1
CCA;

(f ) ρ(TJ ) =
√

3
4 = .433013, ρ(TGS) = 3+

√
73

64 = .180375, so Gauss–Seidel converges about
log ρGS/ log ρJ = 2.046 times as fast.

(g) Approximately log(.5 × 10−6)/ log ρGS ≈ 8.5 iterations. Indeed, under Gauss–Seidel,

x(9) =

0
B@

.304347

.260869
1.73913

1
CA, with error e(9) = 10−6

0
B@
−1.0475
−.4649

.1456

1
CA.

♠ 10.5.13. For the diagonally dominant systems in Exercise 10.5.3, starting with the initial guess
x = y = z = 0, compute the solution to 3 decimal places using the Gauss–Seidel method.
Check your answer by solving the system directly by Gaussian Elimination.

Solution: (a) x = 1
7 = .142857, y = − 2

7 = − .285714; (b) x = −30, y = 48;
(e) x = −1.9172, y = − .339703, z = −2.24204;
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(g) x = − .84507, y = − .464789, z = − .450704;

10.5.14. Which of the systems in Exercise 10.5.3 lead to convergent Gauss–Seidel schemes? In
each case, which converges faster, Jacobi or Gauss–Seidel?

Solution: (a) ρJ = .2582, ρGS = .0667; (b) ρJ = .7303, ρGS = .5333; (c) ρJ = .5477,
ρGS = .3; (d) ρJ = .5, ρGS = .2887; (e) ρJ = .4541, ρGS = .2887; (f ) ρJ = .3108,
ρGS = .1667; (g) ρJ = 1.118, ρGS = .7071; Thus, all systems lead to convergent Gauss–
Seidel schemes, with faster convergence than Jacobi (which doesn’t even converge in case (g)).

10.5.15. (a) Solve the positive definite linear systems in Exercise 10.5.6 using the Gauss–Seidel
scheme to achieve 4 decimal place accuracy. (b) Compare the convergence rate with the
Jacobi method.

Solution:

(a) Solution: u =

 
.7857
.3571

!
; spectral radii: ρJ = 1√

15
= .2582, ρGS = 1

15 = .06667, so

Gauss–Seidel converges exactly twice as fast;

(b) Solution: u =

 
−4

5

!
; spectral radii: ρJ = 1√

2
= .7071, ρGS = 1

2 = .5, so Gauss–Seidel

converges exactly twice as fast;

(c) Solution: u =

0
B@

.3333
−1.0000

1.3333

1
CA; spectral radii: ρJ = .7291, ρGS = .3104, so Gauss–Seidel

converges log ρGS/ log ρJ = 3.7019 times as fast;

(d) Solution: u =

0
B@

.7273
−3.1818

.6364

1
CA; spectral radii: ρJ = 2√

15
= .5164, ρGS = 4

15 = .2667, so

Gauss–Seidel converges exactly twice as fast;

(e) Solution: u =

0
BBB@

.8750
−.1250
−.1250
−.1250

1
CCCA; spectral radii: ρJ = .6, ρGS = .1416, so Gauss–Seidel

converges log ρGS/ log ρJ = 3.8272 times as fast;

(f ) Solution: u =

0
BBB@

0.
.7143

−.1429
−.2857

1
CCCA; spectral radii: ρJ = .4714, ρGS = .3105, so Gauss–Seidel

converges log ρGS/ log ρJ = 1.5552 times as fast.

♣ 10.5.16. Let A =

0
BBB@

c 1 0 0
1 c 1 0
0 1 c 1
0 0 1 c

1
CCCA. (a) For what values of c is A diagonally dominant? (b) Use

a computer to find the smallest positive value of c > 0 for which Jacobi iteration converges.
(c) Find the smallest positive value of c > 0 for which Gauss–Seidel iteration converges. Is
your answer the same? (d) When they both converge, which converges faster — Jacobi or
Gauss–Seidel? Does your answer depend upon the value of c?

Solution:
(a) | c | > 2;
(b)

♠ 10.5.17. Consider the linear system

2.4x − .8y + .8z = 1, − .6x + 3.6y − .6z = 0, 15x + 14.4y − 3.6z = 0.

Show, by direct computation, that Jacobi iteration converges to the solution, but Gauss–

iter 9/9/04 568 c© 2004 Peter J. Olver



Seidel does not.

Solution: The solution is x = .083799, y = .21648, z = 1.21508. The Jacobi spectral ra-

dius is .8166, and so it converges reasonably rapidly to the solution; after 50 iterations, x(50) =

.0838107, y(50) = .216476, z(50) = 1.21514. On the other hand, the Gauss–Seidel spectral ra-

dius is 1.0994, and it slowly diverges; after 50 iterations, x(50) = −30.5295, y(50) = 9.07764,

z(50) = −90.8959.

♠ 10.5.18. Discuss convergence of Gauss–Seidel iteration for the system
5x + 7y + 6z + 5w = 23,

7x + 10y + 8z + 7w = 32,

6x + 8y + 10z + 9w = 33,

5x + 7y + 9z + 10w = 31.

Solution: The solution is x = y = z = w = 1. Gauss–Seidel converges, but extremely slowly.

After 2000 iterations, the approximate solution x(50) = 1.00281, y(50) = .99831, z(50) =

.999286, w(50) = 1.00042, correct to 2 decimal places. The spectral radius is .9969 and so it
takes, on average, 741 iterations per decimal place.

10.5.19. Let A =

0
B@

2 4 −4
3 3 3
2 2 1

1
CA. Find the spectral radius of the Jacobi and Gauss–Seidel iter-

ation matrices, and discuss their convergence.

Solution: ρ(TJ ) = 0 while ρ(TGS) = 2. Thus Jacobi converges very rapidly, whereas Gauss–
Seidel diverges.

♠ 10.5.20. Consider the linear system H5u = e1, where H5 is the 5 × 5 Hilbert matrix. Does the
Jacobi method converge to the solution? If so, how fast? What about Gauss–Seidel?

Solution: Jacobi doesn’t converge because its spectral radius is 3.4441. Gauss–Seidel converges,
but extremely slowly, since its spectral radius is .999958.

♦ 10.5.21. How many arithmetic operations are needed to perform k steps of the Jacobi iter-
ation? How does this compare with Gaussian Elimination? Do the same conclusions ap-
ply to Gauss–Seidel? Under what conditions is Jacobi or Gauss–Seidel more efficient than
Gaussian Elimination?

Solution:

♣ 10.5.22. The näıve iterative method for solving Au = b is to rewrite it in fixed point form
u = T u + c, where T = I − A and c = b. (a) What conditions on the eigenvalues of A
ensure convergence of the näıve method? (b) Use the Gerschgorin Theorem 10.34 to prove

that the näıve method converges to the solution to

0
B@

.8 − .1 − .1

.2 1.5 − .1

.2 − .1 1.0

1
CA

0
B@

x
y
z

1
CA =

0
B@

1
−1

2

1
CA.

(c) Check by implementing the method.

Solution:
(a) If λ is an eigenvalue of T = I − A, then µ = 1 − λ is an eigenvalue of A, and hence we

require the eigenvalues of A to satisfy | 1 − µ | < 1.
(b) The Gerschgorin disks are

D1 = { | z − .8 | ≤ .2 } , D2 = { | z − 1.5 | ≤ .3 } , D3 = { | z − 1 | ≤ .3 } ,

and hence all eigenvalues of A lie within a distance 1 of 1. Indeed, we can explicitly
compute the eigenvalues of A, which are

µ1 = 1.5026, µ2 = .8987 + .1469 i , µ3 = .8987 − .1469 i .

Hence, the spectral radius of T = I − A is ρ(T ) = max
n
| 1 − µj |

o
= .5026. Starting the
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iterations with u(0) = 0, we arrive at the solution u? = ( 1.36437,−.73836, 1.65329 )T to
4 decimal places after 13 iterations.

♥ 10.5.23. Consider the linear system Au = b where A =

 
2 1

−1 3

!
, b =

 
3
2

!
.

(a) Discuss the convergence of the Jacobi iteration method. (b) Discuss the convergence
of the Gauss–Seidel iteration method. (c) Write down the explicit formulas for the SOR
method. (d) What is the optimal value of the relaxation parameter ω for this system?
How much faster is the convergence as compared to the ordinary Jacobi method? (e) Suppose

your initial guess is u(0) = 0. Give an estimate as to how many steps each iterative method
(Jacobi, Gauss–Seidel, SOR) would require in order to approximate the solution to the sys-
tem to within 5 decimal places. (f ) Verify your answer by direct computation.

♣ 10.5.24. Consider the linear system

4x − y − z = 1, −x + 4y − w = 2, −x + 4z − w = 0, −y − z + 4w = 1.

(a) Find the solution using Gaussian Elimination and Back Substitution. (b) Using 0 as
your initial guess, how many iterations are required to approximate the solution to within
six decimal places using (i) Jacobi iteration, (ii) Gauss–Seidel iteration. Can you esti-
mate the spectral radii of the relevant matrices in each case? (c) Try to find the solution
using the SOR method with parameter ω taking various values between .5 and 1.5. Which
value of ω gives the fastest convergence? What is the spectral radius of the SOR matrix?

♠ 10.5.25. (a) Find the spectral radius of the Jacobi and Gauss–Seidel iteration matrices when

A =

0
BBB@

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

1
CCCA. (b) Is A diagonally dominant? (c) Use (10.87) to fix the optimal

value of the SOR parameter. Verify that the spectral radius of the resulting iteration ma-
trix is given by formula (10.87). (d) For each iterative scheme, predict how many itera-
tions are needed to solve the system to 4 decimal places, and then verify your predictions
by direct computation.

♠ 10.5.26. Change the matrix in Exercise 10.5.25 to A =

0
BBB@

2 −1 0 0
1 2 −1 0
0 1 2 −1
0 0 1 2

1
CCCA, and answer the

same questions. Does the SOR method with parameter given by (10.87) speed the itera-
tions up? Why not? Can you find a value of the SOR parameter that does?

♠ 10.5.27. Let A be the n × n tridiagonal matrix with all 2’s on the main diagonal and all −1’s
on the sub- and super-diagonal. (a) Use Exercise 8.2.46 to find the spectral radius of the
Jacobi iteration method to solve Au = b. (b) What is the optimal value of the SOR pa-
rameter based on (10.87)? How many Jacobi iterations are needed to match the effect of a
single SOR step? (c) Test out your conclusions by solving the 8 × 8 system Au = e1 using
both Jacobi and SOR to approximate the solution to 3 decimal places.

♠ 10.5.28. In Exercise 10.5.18 you were asked to solve a system by Gauss–Seidel. How much
faster can you design an SOR scheme to converge? Experiment with several values of the
relaxation parameter ω, and discuss what you find.

♠ 10.5.29. Investigate the three basic iterative techniques — Jacobi, Gauss–Seidel, SOR — for
solving the linear system K?u? = f? for the cubical circuit in Example 6.4.
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♣ 10.5.30. The matrix A =

0
BBBBBBBBBBBBBB@

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

1
CCCCCCCCCCCCCCA

arises in the finite

difference (and finite element) discretization of the Poisson equation on a nine point square
grid. Solve the linear system Au = e5 using (a) Gaussian Elimination; (b) Jacobi itera-
tion; (c) Gauss–Seidel iteration; (d) SOR based on the Jacobi spectral radius.

Solution:
(a) u = ( .0625, .125, .0625, .125, .375, .125, .0625, .125, .0625 )T ;
(b) it takes 11 Jacobi iterations to compute the first two decimal places of the solution, and

17 for 3 place accuracy;
(c) it takes 6 Gauss–Seidel iterations to compute the first two decimal places of the solu-

tion, and 9 for 3 place accuracy;
(d) ρJ = 1√

2
for the

♣ 10.5.31. The generalization of Exercise 10.5.30 to an n × n grid results in an n2 × n2 matrix

in block tridiagonal form A =

0
BBBBB@

K − I
− I K − I

− I K − I
. . .

. . .
. . .

1
CCCCCA

, in which K is the tridiagonal

n × n matrix with 4’s on the main diagonal and −1’s on the sub- and super-diagonal, while
I denotes an n × n identity matrix. Use the known value of the Jacobi spectral radius ρJ =

cos
π

n + 1
, [74], to design an SOR method to solve the linear system Au = f . Run your

method on the cases n = 5 and f = e13 and n = 25 and f = e63 corresponding to a unit
force at the center of the grid. How much faster is the convergence rate?

♣ 10.5.32. Consider the linear system Ax = b based on the n × n pentadiagonal matrix

A =

0
BBBBBBBBBBB@

z 1 1 0
1 z 1 1 0
1 1 z 1 1 0
0 1 1 z 1 1

. . .
0 1 1 z 1

. . .
0 1 1 z

. . .
. . .

. . .
. . .

. . .

1
CCCCCCCCCCCA

. (a) For what values of z are the Jacobi and

Gauss–Seidel methods guaranteed to converge? (b) Test your answer numerically for n =
20. (c) How small can | z | be before the methods diverge? (d) For z = 4, can you predict
the spectral radii of the coefficient matrices for both iterative schemes from your numerical
data? (e) For z = 4, find a value of ω for which the Gauss–Seidel SOR method converges
significantly faster. (f ) If possible, determine an optimal value for ω.

♦ 10.5.33. For the matrix treated in Example 10.50, prove that (a) as ω increases from 1 to

8 − 4
√

3, the two eigenvalues move towards each other, with the larger one decreasing in
magnitude; (b) if ω > 8 − 4

√
3, the eigenvalues are complex conjugates, with larger mod-

ulus than the optimal value. Can you conclude that ω? = 8 − 4
√

3 is the optimal value for
the SOR parameter?
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Solution: The two eigenvalues

λ1 = 1
8

„
ω2 − 8ω + 8 + ω

q
ω2 − 16ω + 16

«
, λ2 = 1

8

„
ω2 − 8ω + 8 − ω

q
ω2 − 16ω + 16

«
.

are real for 0 ≤ ω ≤ 8−4
√

3 . A graph of the modulus of the eigenvalues over the range 0 ≤ ω ≤ 2

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

reveals that, as ω increases, the smaller eigenvalue is increasing and

the larger decreasing until they meet at 8 − 4
√

3 ; after this point, both eigenvalues are complex
conjugates of the same modulus. To prove this analytically, we compute

dλ2

dω
=

3 − ω

4
+

2 − ω√
ω2 − 16ω + 16

> 0

for 1 ≤ ω ≤ 8 − 4
√

3 , and so the smaller eigenvalue is increasing. Furthermore,

dλ2

dω
=

3 − ω

4
− 2 − ω√

ω2 − 16ω + 16
< 0

on the same interval, so the larger eigenvalue is decreasing. Once ω > 8 − 4
√

3 , the eigenvalues
are complex conjugates, of modulus |λ1 | = |λ2 | = ω − 1 > ω? − 1. Q.E.D.

♥ 10.5.34. If u(k) is an approximation to the solution to Au = b, then the residual vector

r(k) = b − Au(k) measures how accurately the approximation solves the system.

(a) Show that the Jacobi iteration can be written in the form u(k+1) = u(k) + D−1r(k).

(b) Show that the Gauss–Seidel iteration has the form u(k+1) = u(k) + (L + D)−1r(k).

(c) Show that the SOR iteration has the form u(k+1) = u(k) + (ωL + D)−1r(k).

(d) If ‖ r(k) ‖ is small, does this mean that u(k) is close to the solution? Explain your an-
swer and illustrate with a couple of examples.

Solution:
(a) u(k+1) = u(k) + D−1r(k) = u(k) − D−1Au(k) + D−1b = u(k) − D−1(L + D + U)u(k) +

D−1b = −D−1(L + U)u(k) + D−1b, which agrees with (10.66).

(b) u(k+1) = u(k) + (L + D)−1r(k) = u(k) − (L + D)−1Au(k) + (L + D)−1b = u(k) − (L +

D)−1(L + D + U)u(k) + (L + D)−1b = − (L + D)−1U u(k) + (L + D)−1b, which agrees
with (10.72).

(c) u(k+1) = u(k)+(ωL+D)−1r(k) = u(k)−(ωL+D)−1Au(k)+(ωL+D)−1b = u(k)−(ωL+

D)−1(L+D+U)u(k)+(ωL+D)−1b = −(ωL+D)−1
“

(1 − ω)D + U
”
u(k)+(ωL+D)−1b,

which agrees with (10.81).

(d) If u? is the exact solution, so Au? = b, then r(k) = A(u? − u(k)) and so ‖u(k) − u? ‖ ≤
‖A−1 ‖ ‖ r(k) ‖. Thus, if ‖ r(k) ‖ is small, the iterate u(k) is close to the solution u? pro-

vided ‖A−1 ‖ is not too large. For instance, if A =

 
1 0
0 10−5

!
, b =

 
1
1

!
and r(k) =.

10.5.35. Let K be a positive definite n × n matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

For what values of ε does the iterative system u(k+1) = u(k)+ε r(k), where r(k) = f−Ku(k)

is the current residual vector , converge to the solution? What is the optimal value of ε, and
what is the convergence rate?

Solution: Note that the iteration matrix is T = I − ε A, which has eigenvalues 1 − ε λj . For
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0 < ε <
2

λ1

the iterations converge. The optimal value is ε =
2

λ1 + λn

, with spectral radius

ρ(T ) =
λ1 − λn

λn + λ1

.

10.5.36. Solve the following linear systems by the conjugate gradient method, keeping track of
the residual vectors and solution approximations as you iterate.

(a)

 
3 −1

−1 5

!
u =

 
2
1

!
, (b)

0
B@

6 2 1
2 3 −1
1 −1 2

1
CAu =

0
B@

1
0

−2

1
CA, (c)

0
B@

6 −1 −3
−1 7 4
−3 4 9

1
CAu =

0
B@
−1
−2

7

1
CA,

(d)

0
BBB@

6 −1 −1 5
−1 7 1 −1
−1 1 3 −3

5 −1 −3 6

1
CCCAu =

0
BBB@

1
2
0

−1

1
CCCA, (e)

0
BBB@

5 1 1 1
1 5 1 1
1 1 5 1
1 1 1 5

1
CCCAu =

0
BBB@

4
0
0
0

1
CCCA.

Solution: In each solution, the last uk is the actual solution, with residual rk = f − Kuk = 0.

(a) r0 =

 
2
1

!
, u1 =

 
.76923
.38462

!
, r1 =

 
.07692

−.15385

!
, u2 =

 
.78571
.35714

!
,

(b) r0 =

0
B@

1
0

−2

1
CA, u1 =

0
B@

.5
0

−1

1
CA, r1 =

0
B@
−1
−2
−.5

1
CA, u2 =

0
B@

.51814
−.72539

−1.94301

1
CA,

r2 =

0
B@

1.28497
−.80311

.64249

1
CA, u3 =

0
B@

1.
−1.4
−2.2

1
CA.

(c) r0 =

0
B@
−1
−2

7

1
CA, u1 =

0
B@
−.13466
−.26933

.94264

1
CA, r1 =

0
B@

2.36658
−4.01995
−.81047

1
CA, u2 =

0
B@
−.13466
−.26933

.94264

1
CA,

r2 =

0
B@

.72321

.38287

.21271

1
CA, u3 =

0
B@

.33333
−1.00000

1.33333

1
CA.

(d) r0 =

0
BBB@

1
2
0

−1

1
CCCA, u1 =

0
BBB@

.2

.4
0

−.2

1
CCCA, r1 =

0
BBB@

1.2
−.8
−.8
−.4

1
CCCA, u2 =

0
BBB@

.90654

.46729
−.33645
−.57009

1
CCCA,

r2 =

0
BBB@

−1.45794
−.59813
−.26168

−2.65421

1
CCCA, u3 =

0
BBB@

4.56612
.40985

−2.92409
−5.50820

1
CCCA, r3 =

0
BBB@

−1.36993
1.11307

−3.59606
.85621

1
CCCA, u4 =

0
BBB@

9.50
1.25

−10.25
−13.00

1
CCCA.

(e) r0 =

0
BBB@

4
0
0
0

1
CCCA, u1 =

0
BBB@

.8
0
0
0

1
CCCA, r1 =

0
BBB@

0.
−.8
−.8
−.8

1
CCCA, u2 =

0
BBB@

.875
−.125
−.125
−.125

1
CCCA.

10.5.37. The exact solution to the linear system

x + 1
2 y + 1

3 z = 1
3 , 1

2 x + 1
3 y + 1

4 z = 1
12 , 1

3 x + 1
4 y + 1

5 z = 1
30 ,

is x = 1, y = −2, z = 1. (a) Apply Gaussian Elimination with 2 digit rounding arith-
metic to compute the solution. What is your error? (b) Does pivoting help? (c) Apply the
conjugate gradient method using the same 2 digit rounding arithmetic. How much closer is
your final solution?
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Solution:

♣ 10.5.38. According to Example 3.33, the n × n Hilbert matrix Hn is positive definite, and
hence one can apply the conjugate gradient method to solve the linear system Hnu =
f . For the values n = 5, 10, 30, let u? ∈ R

n be the vector with all entries equal to 1.
(a) Compute f = Hnu?. (b) Use Gaussian Elimination to solve Hnu = f . How close is
your solution to u?? (c) Does pivoting improve the solution in part (b)? (d) Use conju-
gate gradients to solve the same system. How many iterates do you need to obtain a rea-
sonable approximation, say to 2 decimal places, to the exact solution u??

Solution:

10.5.39. Try applying the Conjugate Gradient Algorithm to the system
−x + 2y + z = −2, y + 2z = 1, 3x + y − z = 1. Do you obtain the solution? Why?

Solution: r0 =

0
B@
−2

1
1

1
CA, u1 =

0
B@

.9231
−.4615
−.4615

1
CA, r1 =

0
B@

.3077
2.3846

−1.7692

1
CA, u2 =

0
B@

2.7377
−3.0988
−.2680

1
CA,

r2 =

0
B@

7.2033
4.6348

−4.3823

1
CA, u3 =

0
B@

5.5113
−9.1775

.7262

1
CA, but the solution is u =

0
B@

1
−1

1

1
CA. the problem is that

the coefficient matrix is not positive definite, and so the fact that the solution is “orthogonal”
to the conjugate vectors does not uniquely specify it.

♣ 10.5.40. Use the conjugate gradient method to solve the system in Exercise 10.5.30. How many
iterations do you need to obtain the solution that is accurate to 2 decimal places? How
does this compare to the Jacobi and SOR methods?

Solution: Remarkably, after only two iterations, the method finds the exact solution: u3 = u? =

( .0625, .125, .0625, .125, .375, .125, .0625, .125, .0625 )T , and hence the convergence is dramati-
cally faster than the other iterative methods.

♦ 10.5.41. In (10.91), find the value of tk that minimizes p(uk+1).

♠ 10.5.42. Use the direct gradient descent algorithm (10.91) using the value of tk found in Ex-
ercise 10.5.41 to solve the linear systems in Exercise 10.5.36. Compare the speed of conver-
gence with that of the conjugate gradient method.

10.5.43. True or false: If the residual vector satisfies ‖ r ‖ < .01, then u approximates the
solution to within two decimal places.

Solution: False. For example, consider the homogeneous systme Ku = 0 where K =

 
.0001 0

0 1

!
,

with solution u? = 0. The residual for u =

 
1
0

!
is r = −Ku =

 
−.01

0

!
with ‖ r ‖ = .01,

yet not even the leading digit of u agrees with the true solution. In general, if u? is the true
solution to Ku = f , then the residual is r = f − Au = A(u? − u), and hence ‖u? − u ‖ ≤
‖A−1 ‖‖ r ‖, so the result is true when ‖A−1 ‖ ≤ 1.

10.5.44. How many arithmetic operations are needed to implement one iteration of the conju-
gate gradient method? How many iterations can you perform before the method becomes
more work that direct Gaussian Elimination? Remark : If the matrix is sparse, the number
of operations can decrease dramatically.
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10.6. Numerical Computation of Eigenvalues.numev

♠ 10.6.1. Use the power method to find the dominant eigenvalue and associated eigenvector of
the following matrices:

(a)

 
−1 −2

3 4

!
, (b)

 
−5 2
−3 0

!
, (c)

0
B@

3 −1 0
−1 2 −1

0 −1 3

1
CA, (d)

0
B@
−2 0 1
−3 −2 0
−2 5 4

1
CA,

(e)

0
B@
−1 −2 −2

1 2 5
−1 4 0

1
CA, (f )

0
B@

2 2 1
1 3 1
2 2 2

1
CA, (g)

0
BBB@

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

1
CCCA, (h)

0
BBB@

4 1 0 1
1 4 1 0
0 1 4 1
1 0 1 4

1
CCCA.

Solution: In all cases, we use the normalized version (10.102) starting with u(0) = e1; the an-
swers are correct to 4 decimal places.

(a) After 17 iterations, we find λ = 2.00002, u = (−.55470, .83205 )T ;

(b) after 26 iterations, we find λ = −3.00003, u = ( .70711, .70710 )T ;

(c) after 38 iterations, we find λ = 3.99996, u = ( .57737,−.57735, .57734 )T ;

(d) after 121 iterations, we find λ = −3.30282, u = ( .35356, .81416,−.46059 )T ;

(e) after 36 iterations, we find λ = 5.54911, u = (−.39488, .71005, .58300 )T ;

(f ) after 9 iterations, we find λ = 5.23607, u = ( .53241, .53241, .65810 )T ;

(g) after 36 iterations, we find λ = 3.61800, u = ( .37176,−.60151, .60150,−.37174 )T ;

(h) after 30 iterations, we find λ = 5.99997, u = ( .50001, .50000, .50000, .50000 )T .

♠ 10.6.2. Let Tn be the tridiagonal matrix whose diagonal entries are all equal to 2 and whose
sub- and super-diagonal entries all equal 1. Use the power method to find the dominant
eigenvalue of Tn for n = 10, 20, 50. Do your values agree with those in Exercise 8.2.46. How
many iterations do you require to obtain 4 decimal place accuracy?

Solution:
For n = 10 it takes 159 iteratations to get λ1 = 3.9189 = 2 + 2 cos 1

6 π to 4 decimal places.

for n = 20 it takes 510 iteratations to get λ1 = 3.9776 = 2 + 2 cos 1
21 π to 4 decimal places.

for n = 50 it takes 2392 iteratations to get λ1 = 3.9962 = 2 + 2 cos 1
51 π to 4 decimal places.

♠ 10.6.3. Use the power method to find the largest singular value of the following matrices:

(a)

 
1 2

−1 3

!
, (b)

 
2 1 −1

−2 3 1

!
, (c)

 
2 2 1 −1
1 −2 0 1

!
, (d)

0
B@

3 1 −1
1 −2 2
2 −1 1

1
CA.

Solution: In each case, to find the dominant singular value of a matrix A, we apply the power

method to K = AT A and take the square root of the dominant eigenvalue to find the dominant

singular value σ1 =
q

λ1 .

(a) K =

 
2 −1

−1 13

!
; after 11 iterations we obtain λ1 = 13.0902 and σ1 = 3.6180;

(b) K =

0
B@

8 −4 −4
−4 10 2
−4 2 2

1
CA; after 15 iterations we obtain λ1 = 14.4721 and σ1 = 3.8042;
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(c) K =

0
BBB@

5 2 2 −1
2 8 2 −4
2 2 1 −1

−1 −4 −1 2

1
CCCA; after 16 iterations we obtain λ1 = 11.6055 and σ1 = 3.4067;

(d) K =

0
B@

14 −1 1
−1 6 −6

1 −6 6

1
CA; after 39 iterations we obtain λ1 = 14.7320 and σ1 = 3.8382.

10.6.4. Prove that, for the iterative scheme (10.102), ‖Au(k) ‖ → |λ1 |. Assuming λ1 is real,
explain how to deduce its sign.

Solution: Since v(k) → λk
1v1 as k → ∞,

u
(k) =

v(k)

‖v(k) ‖
→ c1 λk

1v1

| c1 | |λ1 |k‖v1 ‖
=

8
<
:

u1, λ1 > 0,

(−1)ku1, λ1 < 0,
where u1 = sign c1

v1

‖v1 ‖

is one of the two real unit eigenvectors. Thus, Au(k) →
8
<
:

λ1u1, λ1 > 0,

(−1)kλ1u1, λ1 < 0,
so ‖Au(k) ‖ →

|λ1 |. If λ1 > 0, the iterates u(k) → u1 converge to a unit eigenvector, whereas if λ1 < 0, the

iterates u(k) → (−1)ku1 swtich back and forth between the two real unit eigenvectors.

♦ 10.6.5. The Inverse Power Method . Let A be a nonsingular matrix. Show that the eigenval-
ues of A−1 are the reciprocals 1/λ of the eigenvalues of A. How are the eigenvectors re-

lated?(a) Show how to use the power method on A−1 to produce the smallest (in modulus)
eigenvalue of A. (b) What is the rate of convergence of the algorithm? (c) Design a prac-
tical iterative algorithm based on the (permuted) LU decomposition of A.

Solution:

(a) If Av = λv then A−1v =
1

λ
v, and so v is also the eigenvector of A−1.

(b) If λ1, . . . , λn are the eigenvalues of A, with |λ1 | > |λ2 | > · · · > |λn | > 0 (recalling that

0 cannot be an eigenvalue if A is nonsingular), then
1

λ1

, . . . ,
1

λn

are the eigenvalues of

A−1, and
1

|λn | >
1

|λn−1 |
> · · · >

1

|λ1 |
and so

1

λ1

is the dominant eigenvalue of A−1.

Thus, applying the power method to A−1 will produce the reciprocal of the smallest (in
absolute value) eigenvalue of A and the corresponding eigenvector.

(c) The rate of convergence of the algorithm is the ratio |λn/λn−1 | of the moduli of the
smallest two eigenvalues.

(d) Once we factor P A = LU , we can solve the iteration equation Au(k+1) = u(k) by

rewriting it in the form LU u(k+1) = P u(k), and then using Forward and Back Substi-

tution to solve for u(k+1). As you know, this is much faster than computing A−1.

♠ 10.6.6. Apply the inverse power method of Exercise 10.6.7 to the find the smallest eigenvalue
of the matrices in Exercise 10.6.1.

Solution:
(a) After 15 iterations, we find λ = .99998, u = ( .70711,−.70710 )T ;

(b) after 24 iterations, we find λ = −1.99991, u = (−.55469,−.83206 )T ;

(c) after 12 iterations, we find λ = 1.00001, u = ( .40825, .81650, .40825 )T ;

(d) after 6 iterations, we find λ = .30277, u = ( .35355,−.46060, .81415 )T ;

(e) after 7 iterations, we find λ = −.88536, u = (−.88751,−.29939, .35027 )T ;

(f ) after 7 iterations, we find λ = .76393, u = ( .32348, .25561,−.91106 )T ;
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(g) after 11 iterations, we find λ = .38197, u = ( .37175, .60150, .60150, .37175 )T ;

(h) after 16 iterations, we find λ = 2.00006, u = ( .500015,−.50000, .499985,−.50000 )T .

♦ 10.6.7. The Shifted Inverse Power Method . Suppose that µ is not an eigenvalue of A. Show

that the iterative scheme u(k+1) = (A − µ I )−1u(k) converges to the eigenvector of A cor-
responding to the eigenvalue λ? that is closest to µ. Explain how to find the eigenvalue
λ?.(a) What is the rate of convergence of the algorithm? (b) What happens if µ is an
eigenvalue?

Solution:
(a) According to Exercises 8.2.18, 23, if A has eigenvalues λ1, . . . , λn, then (A − µ I )−1 has

eigenvalues νi =
1

λi − µ
. Thus, applying the power method to (A − µ I )−1 will produce

its dominant eigenvalue ν?, for which |λstar − µ | is the smallest. We then recover the

eigenvalue λ? = µ +
1

ν?
of A which is closest to µ.

(b) The rate of convergence is the ratio | (λi − µ)/(λj − µ) | of the moduli of the smallest

two eigenvalues of the shifted matrix.
(c) µ is an eigenvalue of A if and only if A − µ I is a singular matrix, and hence one cannot

implemment the method. Also choosing µ too close to an eigenvalue will result in an
ill-conditioned matrix, and so the algorithm may not converge properly.

♠ 10.6.8. Apply the shifted inverse power method of Exercise 10.6.7 to the find the eigenvalue
closest to µ = .5 of the matrices in Exercise 10.6.1.

Solution:
(a) After 11 iterations, we find ν? = 2.00002, so λ? = 1.0000, u = ( .70711,−.70710 )T ;

(b) after 27 iterations, we find ν? = −.40003, so λ = −1.9998, u = ( .55468, .83207 )T ;

(c) after 10 iterations, we find ν? = 2.00000, so λ = 1.00000, u = ( .40825, .81650, .40825 )T ;

(d) after 7 iterations, we find ν? = −5.07037, so λ = .30278, u = (−.35355, .46060,−.81415 )T ;

(e) after 8 iterations, we find ν? = .72183, so λ = −.88537, u = ( .88753, .29937,−.35024 )T ;

(f ) after 6 iterations, we find ν? = 3.78885, so λ = .76393, u = ( .28832, .27970,−.91577 )T ;

(g) after 9 iterations, we find ν? = −8.47213, so λ = .38197, u = (−.37175,−.60150,−.60150,−.37175 )T ;

(h) after 14 iterations, we find ν? = .66665, so λ = 2.00003, u = ( .50001,−.50000, .49999,−.50000 )T .

♠ 10.6.9. (i) Explain how to use the deflation method of Exercise 8.2.51 to find the subdom-
inant eigenvalue of a nonsingular matrix A. (ii) Apply your method to the matrices in
Exercise 10.6.1.

Solution:
(i)

10.6.10. Suppose that Au(k) = 0 in the iterative procedure (10.102). What does this indicate?

Solution: A is a singular matrix and 0 is an eigenvalue. The corresponding eigenvectors are in

ker A. In fact, assuming u(k) 6= 0, the iterates u(0), . . . ,u(k) form a Jordan chain for the zero
eigenvalue. To find other eigenvalues and eigenvectors, you need to try a different initial vector

u(0).

10.6.11. Apply the QR algorithm to the following symmetric matrices to find their eigenvalues
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and eigenvectors to 2 decimal places: (a)

 
1 2
2 4

!
, (b)

 
3 −1

−1 5

!
, (c)

0
B@

2 1 0
1 2 3
0 3 1

1
CA,

(d)

0
B@

2 5 0
5 0 −3
0 −3 3

1
CA, (e)

0
BBB@

3 −1 0 0
−1 3 −1 0

0 −1 3 −1
0 0 −1 3

1
CCCA, (f )

0
BBB@

6 1 −1 0
1 8 1 −1

−1 1 4 1
0 −1 1 3

1
CCCA.

Solution:

(a) eigenvalues: 5, 0; eigenvectors:

 
.4472
.8944

!
,

 
.8944

−.4472

!
.

(b) eigenvalues: 5.4142, 2.5858; eigenvectors:

 
−.3827

.9239

!
,

 
.9239
.3827

!
.

(c) eigenvalues: 4.7577, 1.9009,−1.6586; eigenvectors:

0
B@

.2726

.7519

.6003

1
CA,

0
B@

.9454
−.0937
−.3120

1
CA,

0
B@
−.1784

.6526
−.7364

1
CA.

(d) eigenvalues: 7.0988, 2.7191,−4.8180;

eigenvectors:

0
B@

.6205

.6328
−.4632

1
CA,

0
B@
−.5439
−.0782
−.8355

1
CA,

0
B@

.5649
−.7704
−.2956

1
CA.

(e) eigenvalues: 4.6180, 3.6180, 2.3820, 1.3820;

eigenvectors:

0
BBB@

−.3717
.6015

−.6015
.3717

1
CCCA,

0
BBB@

−.6015
.3717
.3717

−.6015

1
CCCA,

0
BBB@

−.6015
−.3717

.3717

.6015

1
CCCA,

0
BBB@

.3717

.6015

.6015

.3717

1
CCCA.

(f ) eigenvalues: 8.6091, 6.3083, 4.1793, 1.9033;

eigenvectors:

0
BBB@

−.3182
−.9310
−.1008

.1480

1
CCCA,

0
BBB@

.8294
−.2419
−.4976
−.0773

1
CCCA,

0
BBB@

.4126
−.1093

.6419

.6370

1
CCCA,

0
BBB@

−.2015
.2507

−.5746
.7526

1
CCCA.

10.6.12. Show that applying the QR algorithm to the matrix A =

0
B@

4 −1 1
−1 7 2

1 2 7

1
CA results in a

diagonal matrix with the eigenvalues on the diagonal, but not in decreasing order. Explain.

Solution: eigenvalues: 9, 6, 3; eigenvectors:

0
B@

0
.7071
.7071

1
CA,

0
B@

.5774
− .5774

.5774

1
CA,

0
B@

.8165

.4082
− .4082

1
CA. The reason is

because the eigenvector matrix ST is not regular.

10.6.13. Apply the QR algorithm to the following non-symmetric matrices to find their eigen-
values to 3 decimal places:

(a)

 
−1 −2

3 4

!
, (b)

 
2 3
1 5

!
, (c)

0
B@

2 1 0
2 0 −3
0 −2 1

1
CA, (d)

0
B@

2 5 1
2 −1 3
4 5 3

1
CA, (e)

0
BBB@

6 1 7 9
6 8 14 9
3 1 4 6
3 2 5 3

1
CCCA.

Solution:

(a) eigenvalues: 2, 1; eigenvectors:

 
−2

3

!
,

 
−1

1

!
.

(b) eigenvalues: 1.2087, 5.7913; eigenvectors:

 
− .9669

.2550

!
,

 
− .6205
− .7842

!
.

(c) eigenvalues: 3.5842,−2.2899, 1.7057;
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eigenvectors:

0
B@
−.4466
−.7076
0.5476

1
CA,

0
B@

.1953
−.8380
−.5094

1
CA,

0
B@

.7491
−.2204

.6247

1
CA.

(d) eigenvalues: 7.7474,− .2995,−3.4479;

eigenvectors:

0
B@
− .4697
− .3806
− .7966

1
CA,

0
B@
− .7799

.2433

.5767

1
CA,

0
B@

.6487
− .7413

.1724

1
CA.

(e) eigenvalues: 18.3344, 4.2737, 0,−1.6081;

eigenvectors:

0
BBB@

.4136

.8289

.2588

.2734

1
CCCA,

0
BBB@

− .4183
.9016

− .0957
.0545

1
CCCA,

0
BBB@

− .5774
− .5774

.5774
0

1
CCCA,

0
BBB@

− .2057
.4632

− .6168
.6022

1
CCCA.

10.6.14. The matrix A =

0
B@
−1 2 1
−2 3 1
−2 2 2

1
CA has a double eigenvalue of 1, and so our proof of con-

vergence of the QR algorithm doesn’t apply. Does the QR algorithm find its eigenvalues?

Solution: Yes. After 10 iterations, one finds

R10 =

0
B@

2.0011 1.4154 4.8983
0 .9999 −.0004
0 0 .9995

1
CA, S10 =

0
B@
−.5773 .4084 .7071
−.5774 .4082 −.7071
−.5774 −.8165 .0002

1
CA,

so the diagonal entries of R10 give the eigenvalues correct to 3 decimal places, and the columns
of S10 are similar approximations to the orthonormal eigenvector basis.

10.6.15. Explain why the QR algorithm fails to find the eigenvalues of the matrix A =

 
0 1
1 0

!
.

Solution: It has eigenvalues ±1, which have the same magnitude. The QR factorization is triv-
ial, with Q = A and R = I . Thus, RQ = A, and so nothing happens.

♦ 10.6.16. Prove that all of the matrices Ak defined in (10.103) have the same eigenvalues.

Solution: This follows directly from Exercise 8.2.22.

♦ 10.6.17. Prove that if A is symmetric and tridiagonal, then all matrices Ak appearing in the
QR algorithm are also symmetric and tridiagonal.

Solution:

10.6.18. Use Householder matrices to convert the following matrices into tridiagonal form:

(a)

0
B@

8 −7 2
−7 17 −7

2 −7 8

1
CA, (b)

0
BBB@

5 1 −2 1
1 5 1 −2

−2 1 5 1
1 −2 1 5

1
CCCA, (c)

0
BBB@

4 0 −1 1
0 1 0 −1

−1 0 2 0
1 −1 0 3

1
CCCA.

Solution:

(a) H =

0
B@

1 0 0
0 −.9615 .2747
0 .2747 .9615

1
CA, T = H AH =

0
B@

8 7.2801 0
7.2801 20.0189 3.5660

0 3.5660 4.9811

1
CA..

(b) H1 =

0
BBB@

1 0 0 0
0 −.4082 .8165 −.4082
0 .8165 .5266 .2367
0 −.4082 .2367 .8816

1
CCCA,
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T1 = H1 AH1 =

0
BBB@

5 −2.4495 0 0
−2.4495 3.8333 1.3865 .9397

0 1.3865 6.2801 −.9566
0 .9397 −.9566 6.8865

1
CCCA,

H2 =

0
BBB@

1 0 0 0
0 1 0 0
0 0 −.8278 −.5610
0 0 −.5610 .8278

1
CCCA,

T = H2 T1 H2 =

0
BBB@

5 −2.4495 0 0
−2.4495 3.8333 −1.6750 0

0 −1.6750 5.5825 .0728
0 0 .0728 7.5842

1
CCCA.

(c) H1 =

0
BBB@

1 0 0 0
0 0 .7071 −.7071
0 .7071 .5 .5
0 −.7071 .5 .5

1
CCCA,

T1 = H1 AH1 =

0
BBB@

4 −1.4142 0 0
−1.4142 2.5 .1464 −.8536

0 .1464 1.0429 .75
0 −.8536 .75 2.4571

1
CCCA,

H2 =

0
BBB@

1 0 0 0
0 1 0 0
0 0 −.1691 .9856
0 0 .9856 .1691

1
CCCA,

T = H2 T1 H2 =

0
BBB@

4 −1.4142 0 0
−1.4142 2.5 −.8660 0

0 −.8660 2.1667 .9428
0 0 .9428 1.3333

1
CCCA.

♠ 10.6.19. Find the eigenvalues, to 2 decimal places, of the matrices in Exercise 10.6.18 by ap-
plying the QR algorithm to the tridiagonal form.

Solution: (a) eigenvalues: 24, 6, 3. (b) eigenvalues: 7.6180, 7.5414, 5.3820, 1.4586. (c) eigenvalues:
4.9354, 3.0000, 1.5374, .5272.

♠ 10.6.20. Use the tridiagonal QR method to find the singular values of the following matrices:

(a)

 
2 1 −1

−2 3 1

!
, (b)

 
2 2 1 −1
1 −2 0 1

!
, (c)

0
B@

3 1 −1
1 −2 2
2 −1 1

1
CA.

Solution:
(a) Omit???

10.6.21. Use Householder matrices to convert the following matrices into upper Hessenberg form:

(a)

0
B@

3 −1 2
1 3 4
2 −1 5

1
CA, (b)

0
BBB@

3 2 −1 1
2 4 0 1
0 1 2 −6
1 0 −5 1

1
CCCA, (c)

0
BBB@

1 0 −1 1
2 1 1 −1

−1 0 1 3
3 −1 1 4

1
CCCA.

Solution:
(a)
(b)
(c)

♠ 10.6.22. Find the eigenvalues, to 2 decimal places, of the matrices in Exercise 10.6.21 by ap-
plying the QR algorithm to the upper Hessenberg form.
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Solution:
(a) eigenvalues: 4.51056, 2.74823,−2.25879,
(b) eigenvalues: 7., 5.74606,−4.03877, 1.29271,
(c) eigenvalues: 4.96894, 2.31549,−1.70869, 1.42426.

10.6.23. Prove that the effect of the first Householder reflection is as given in (10.111).

Solution: First, by Lemma 10.58, H1x1 = y1. Furthermore, since the first entry of u1 is zero,

uT
1 e1 = 0, and so H e1 = ( I − 2u1 uT

1 )e1 = e1. Thus, the first column of H1 A is

H1(a11e1 + x1) = a11e1 + y1 = ( a11,±r, 0, . . . , 0 )T .

Finally, again since the first entry of u1 is zero, the first column of H1 iis e1 and so multiplying
H1 A on the right by H1 doesn’t affect its first column. We conclude that the first column of
the symmetric matrix H1 AH1 has the form given in (10.111); symmetry implies that its first
row is just the transpose of the first column, which completes the proof. Q.E.D.

10.6.24. What is the effect of tridiagonalization on the eigenvectors of the matrix?

Solution: Since T = H−1AH where H = H1H2 · · ·Hn is the product of nthe Househbolder

reflections, Av = λv if and only if T w = λw where w = H−1v is the eigenvector of the
tridiagonalized matrix. thuls, to recover the eigenvectors of A we need to multiply v = H w =
H1H2 · · ·Hnw.

♦ 10.6.25. (a) How many arithmetic operations (multiplications/divisions and additions/subtractions)
are required to place a generic n × n matrix into tridiagonal form? (b) How many opera-
tions are need to perform one iteration of the QR algorithm on an n×n tridiagonal matrix?
(c) How much faster, on average, is the tridiagonal algorithm than the direct algorithm for
finding the eigenvalues of a matrix?
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