
Solutions — Chapter 9

9.1. Basic Solution Techniques.dode

9.1.1. Choose one or more of the following differential equations, and then: (a) Solve the equa-
tion directly. (b) Write down its phase plane equivalent, and the general solution to the
phase plane system. (c) Plot at least four representative trajectories to illustrate the phase
portrait. (d) Choose two trajectories in your phase portrait and graph the corresponding
solution curves u(t). Explain in your own words how the orbit and the solution graph are
related. (i)

¦¦

u + 4u = 0, (ii)
¦¦

u − 4u = 0, (iii)
¦¦

u + 2
¦

u + u = 0, (iv)
¦¦

u + 4
¦

u + 3u = 0,
(v)

¦¦

u − 2
¦

u + 10u = 0.

Solution:

(i) (a) u(t) = c1 cos 2 t+c2 sin 2 t. (b)
du

dt
=

 
0 1

−4 0

!
u. (c) u(t) =

 
c1 cos 2 t + c2 sin 2 t

−2c1 sin 2 t + 2c2 cos 2 t

!
.

(ii) (a) u(t) = c1 e−2 t + c2 e2 t. (b)
du

dt
=

 
0 1
4 0

!
u. (c) u(t) =

 
c1 e−2 t + c2 e2 t

−2c1 e−2 t + 2c2 e2 t

!
.

(iii) (a) u(t) = c1 e− t+c2 te− t. (b)
du

dt
=

 
0 1

−1 −2

!
u. (c) u(t) =

 
c1 e− t + c2 te− t

(c2 − c1)e− t − c2 te− t

!
.

(iv) (a) u(t) = c1 e− t+c2 e−3 t. (b)
du

dt
=

 
0 1

−3 −4

!
u. (c) u(t) =

 
c1 e− t + c2 e−3 t

−c1 e− t − 3c2 e−3 t

!
.

(v) (a) u(t) = c1 et cos 3 t + c2 et sin 3 t. (b)
du

dt
=

 
0 1

−10 2

!
u.

(c) u(t) =

 
c1 e− t cos 3 t + c2 e− t sin 3 t

−(c1 + 3c2)e− t cos 3 t + (3c1 − c2)e− t sin 3 t

!
.

9.1.2. (a) Convert the third order equation
d3u

dt3
+ 3

d2u

dt2
+ 4

du

dt
+ 12u = 0 into a first order

system in three variables by setting u1 = u, u2 =
¦

u, u3 =
¦¦

u. (b) Solve the equation
directly, and then use this to write down the general solution to your first order system.
(c) What is the dimension of the solution space?

Solution:

(a)
du

dt
=

0
B@

0 1 0
0 0 1

−12 −4 −3

1
CAu.

(b) u(t) = c1 e−3 t + c2 cos 2 t + c3 sin 2 t, u(t) =

0
BB@

c1 e−3 t + c2 cos 2 t + c3 sin 2 t

−3c1 e−3 t − 2c2 sin 2 t + 2c3 cos 2 t

9c1 e−3 t − 4c2 cos 2 t − 4c3 sin 2 t

1
CCA,

(c) dimension = 3.

9.1.3. Convert the second order coupled system of ordinary differential equations
¦¦

u = a
¦

u +
b

¦

v + cu + dv,
¦¦

v = p
¦

u + q
¦

v + ru + sv, into a first order system involving four variables.

ds 9/9/04 469 c© 2004 Peter J. Olver



Solution: Set u1 = u, u2 =
¦

u, u3 = v, u4 =
¦

v. Then
du

dt
=

0
BBB@

0 1 0 0
c a d b
0 0 0 1
r p s q

1
CCCAu.

9.1.4. True or false: The phase plane trajectories (9.9) for ( c1, c2 )T 6= 0 are hyperbolas.

Solution: False — there is no quadratic equation in u1, u2 that they satisfy because u2
1, u1 u2, u2

2,
u1, u2 and 1 are linearly independent functions.

♦ 9.1.5. (a) Show that if u(t) solves
¦

u = Au, then its time reversal , defined as v(t) = u(− t),
solves

¦

v = Bv, where B = −A. (b) Explain why the two systems have the same phase
portraits, but the direction of motion along the trajectories is reversed. (c) Apply time
reversal to the system(s) you derived in Exercise 9.1.1. (d) What is the effect of time re-
versal on the original second order equation?

Solution:

(a) Use the chain rule to compute
dv

dt
= − du

dt
(− t) = −Au(− t) = −Av.

(b) Since v(t) = u(− t) parametrizes the same curve as u(t), but in the reverse direction.
(c)

(i)
dv

dt
=

 
0 −1
4 0

!
u; solution: u(t) =

 
c1 cos 2 t − c2 sin 2 t

2c1 sin 2 t + 2c2 cos 2 t

!
.

(ii)
dv

dt
=

 
0 −1

−4 0

!
u; solution: u(t) =

 
c1 e2 t + c2 e−2 t

−2c1 e2 t + 2c2 e−2 t

!
.

(iii)
dv

dt
=

 
0 −1
1 2

!
u; solution: u(t) =

 
c1 et − c2 tet

(c2 − c1)et + c2 tet

!
.

(iv)
dv

dt
=

 
0 −1
3 4

!
u; solution: u(t) =

 
c1 et + c2 e3 t

−c1 et − 3c2 e3 t

!
.

(v)
dv

dt
=

 
0 −1

10 −2

!
u; solution: u(t) =

 
c1 et cos 3 t − c2 et sin 3 t

−(c1 + 3c2)et cos 3 t − (3c1 − c2)et sin 3 t

!
.

(vi) Time reversal changes u1(t) = u(t) into v1(t) = u1(− t) = u(− t) and u2(t) =
¦

u(t) into
v2(t) = u2(− t) =

¦

u(− t) = − ¦

v(t). The net effect is to change the sign of the coefficient

of the first derivative term, so
d2u

dt2
+ a

du

dt
+ bu = 0 becomes

d2v

dt2
− a

dv

dt
+ bv = 0.

9.1.6. (a) Show that if u(t) solves
¦

u = Au, then v(t) = u(2 t) solves
¦

v = Bv, where B = 2A .
(b) How are the solution trajectories of the two systems related?

Solution: (a) Use the chain rule to compute
dv

dt
= 2

du

dt
(2 t) = 2Au(2 t) = 2Av(t), and so

the coefficient matrix is multiplied by 2. (b) The solution trajectories are the same, but the
solution moves twice as fast (in the same direction) along them.

9.1.7. True or false: Each solution to a phase plane system moves at a constant speed along
its trajectory.

Solution: False. If
¦

u = Au then the speed at the point u(t) on the trajectory is ‖Au(t)) ‖. So
the speed is constant only if ‖Au(t)) ‖ is constant. (Later this will be shown to correspond to
A being a skew-symmetric matrix.)

♠ 9.1.8. Use a three-dimensional graphics package to plot solution curves ( t, u1(t), u2(t) )T of
the phase plane systems in Exercise 9.1.1. Discuss their shape and explain how they are
related the phase plane trajectories.

ds 9/9/04 470 c© 2004 Peter J. Olver



Solution: The solution curves project to the phase plane trajectories.

♥ 9.1.9. A first order linear system
¦

u = au + bv,
¦

v = cu + dv, can be converted into a single
second order differential equation by the following device. Assuming b 6= 0, solve the sys-
tem for v and

¦

v in terms of u and
¦

u. Then differentiate your equation for v with respect
to t, and eliminate

¦

v from the resulting pair of equations. The result is a second order or-
dinary differential equation for u(t). (a) Write out the second order equation in terms of
the coefficients a, b, c, d of the first order system. (b) Show that there is a one-to-one corre-
spondence between solutions of the system and solutions of the scalar differential equation.
(c) Use this method to solve the following linear systems, and sketch the resulting phase
portraits. (i)

¦

u = v,
¦

v = −u, (ii)
¦

u = 2u + 5v,
¦

v = −u, (iii)
¦

u = 4u − v,
¦

v = 6u − 3v,
(iv)

¦

u = u + v,
¦

v = u − v, (v)
¦

u = v,
¦

v = 0. (d) Show how to obtain a second order
equation satisfied by v(t) by an analogous device. Are the second order equations for u and
for v the same? (e) Discuss how you might proceed if b = 0.

Solution:
(a) For b 6= 0, we have

v =
1

b
¦

u − a

b
u,

¦

v =
bc − ad

b
u +

d

b
¦

u. (∗)
Differentiating the first equation yields

dv

dt
=

1

b
¦¦

u − a

b
¦

u.

Equating this to the right hand side of the second equation yields leading to the second
order differential equation

¦¦

u − (a + d)
¦

u + (ad − bc)u = 0. (∗∗)
(b) If u(t) solves (∗∗), then defining v(t) by the first equation in (∗) yields a solution to the

first order system. Vice versa, the first component of any solution u(t), v(t) to the sys-
tem gives a solution u(t) to the second order equation.

(c)
(i)

¦¦

u + u = 0, hence u(t) = c1 cos t + c2 sin t, v(t) = −c1 sin t + c2 cos t.
(ii)

¦¦

u − 2
¦

u + 5u = 0, hence

u(t) = c1 et cos 2 t + c2 et sin 2 t, v(t) = (c1 + 2c2)et cos 2 t + (−2c1 + c2)et sin 2 t.

(iii)
¦¦

u − ¦

u − 6u = 0, hence u(t) = c1 e3 t + c2 e−2 t, v(t) = c1 e2 t + 6c2 e−2 t.

(iv)
¦¦

u−2u = 0, hence u(t) = c1 e
√

2 t+c2 e−
√

2 t, v(t) = (
√

2−1)c1 e
√

2 t−(
√

2+1)c2 e−
√

2 t.
(v)

¦¦

u = 0, hence u(t) = c1 t + c2, v(t) = c1.

(d) For c 6= 0 we can solve for u =
1

d
¦

v − c

d
v,

¦

u =
ad − bc

d
u +

b

d
¦

v, leading to the same

second order equation for v, namely,
¦¦

v − (a + d)
¦

v + (ad − bc)v = 0.
(e) If b = 0 then u solves a first order linear equation; once we solve the equation, we can

then recover v by solving an inhomogeneous first order equation. Note that u continues
to solve the same second order equation, but is no longer the most general solution and
so the one-to-one correspondence between solutions breaks down.

9.1.10. Find the solution to the system of differential equations
du

dt
= 3u + 4v,

dv

dt
= 4u − 3v,

with initial conditions u(0) = 3 and v(0) = −2.

Solution: u(t) = 7
5 e−5 t + 8

5 e5 t, v(t) = − 14
5 e−5 t + 4

5 e5 t.

9.1.11. Find the general real solution to the following systems of differential equations:
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(a)

¦

u1 = u1 + 9u2,
¦

u2 = u1 + 3u2.
(b)

¦

x1 = 4x1 + 3x2,
¦

x2 = 3x1 − 4x2.
(c)

¦

y1 = y1 − y2,
¦

y2 = 2y1 + 3y2.

(d)

¦

y1 = y2,
¦

y2 = 3y1 + 2y3,
¦

y3 = −y2.

(e)

¦

x1 = 3x1 − 8x2 + 2x3,
¦

x2 = −x1 + 2x2 + 2x3,
¦

x3 = x1 − 4x2 + 2x3.

Solution:

(a) u1(t) = (
√

10−1)c1 e(2+
√

10) t−(
√

10+1)c2 e(2−
√

10) t, u2(t) = c1 e(2+
√

10) t+c2 e(2−
√

10) t.

(b) x1(t) = −c1 e−5 t + 3c2 e5 t, x2(t) = 3c1 e−5 t + c2 e5 t.

(c) y1(t) = e2 t
h
c1 cos t − (c1 + c2) sin t

i
, y2(t) = e2 t

h
c2 cos t + (2c1 + c2) sin t

i
.

(d) y1(t) = −c1 e− t − c2 et − 2
3 c3, y2(t) = c1 e− t − c2 et, y3(t) = c1 e− t + c2 et + c3.;

(e) x1(t) = 3c1 et + 2c2 e2 t + 2c3 e4 t, x2(t) = c1 et + 1
2 c2 e2 t, x3(t) = c1 et + c2 e2 t + c3 e4 t.

9.1.12. Solve the following initial value problems: (a)
du

dt
=

 
0 2
2 0

!
u, u(1) =

 
1
0

!
,

(b)
du

dt
=

 
1 −2

−2 1

!
u, u(0) =

 
−2

4

!
, (c)

du

dt
=

 
1 2

−1 1

!
u, u(0) =

 
1
0

!
,

(d)
du

dt
=

0
B@
−1 3 −3

2 2 −7
0 3 −4

1
CAu, u(0) =

0
B@

1
0
0

1
CA , (e)

du

dt
=

0
B@

2 1 −6
−1 0 4

0 −1 −2

1
CAu, u(π) =

0
B@

2
−1
−1

1
CA ,

(f )
du

dt
=

0
BBB@

0 0 1 0
0 0 0 2
1 0 0 0
0 2 0 0

1
CCCAu, u(2) =

0
BBB@

1
0
0
1

1
CCCA, (g)

du

dt
=

0
BBB@

2 1 −1 0
−3 −2 0 1

0 0 1 −2
0 0 1 −1

1
CCCAu, u(0) =

0
BBB@

1
−1

2
1

1
CCCA.

Solution:

(a) u(t) =
“

1
2 e2−2 t + 1

2 e−2+2 t,− 1
2 e2−2 t + 1

2 e−2+2 t
”T

;

(b) u(t) =
“

e− t − 3e3 t, e− t + 3e3 t
”T

;

(c) u(t) =
„

et cos
√

2 t,− 1√
2

et sin
√

2 t
«T

;

(d) u(t) =
„

e− t
“

2 − cos
√

6 t
”
, e− t

“
1 − cos

√
6 t +

q
2
3 sin

√
6 t
”
, e− t

“
1 − cos

√
6 t
”«T

;

(e) u(t) = (−4 − 6 cos t − 9 sin t, 2 + 3 cos t + 6 sin t,−1 − 3 sin t )T ;

(f ) u(t) =
“

1
2 e2−t + 1

2 e−2+t,− 1
2 e4−2 t + 1

2 e−4+2 t,− 1
2 e2−t + 1

2 e−2+t, 1
2 e4−2 t + 1

2 e−4+2 t
”T

;

(g) u(t) =
“
− 1

2 e− t + 3
2 cos t − 3

2 sin t, 3
2 e− t − 5

2 cos t + 3
2 sin t, 2 cos t, cos t + sin t

”T
.

9.1.13. (a) Find the solution to the system
dx

dt
= −x + y,

dy

dt
= −x − y, that has initial con-

ditions x(0) = 1, y(0) = 0. (b) Sketch a phase portrait of the system that shows several
typical solution trajectories, including the solution you found in part (a). Clearly indicate
the direction of increasing t on your curves.

Solution: x(t) = e− t cos t, y(t) = −e− t sin t; the orbits spiral in a clockwise dirfection, ap-
proaching the origin exponentially fast as t → ∞.

9.1.14. A planar steady state fluid flow has velocity vector v = ( 2x − 3y, x − y )T . The mo-

tion of the fluid is described by the differential equation
dx

dt
= v. A floating object starts

out at the point ( 1, 1 )T . Find its position after 1 time unit.
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Solution: x(t) = et/2
“

cos
√

3
2 t −

√
3 sin

√
3

2 t
”
, y(t) = et/2

“
cos

√
3

2 t − 1√
3

sin
√

3
2 t

”
, so

( x(1), y(1) )T = (−1.10719, .343028 )T .

9.1.15. A steady state fluid flow has velocity vector v = (−2y, 2x, z )T . Describe the motion

of the fluid particles as governed by the differential equation
dx

dt
= v.

Solution: x(t) =
“

c1 cos 2 t − c2 sin 2 t, c1 sin 2 t + c2 cos 2 t, c3 e− t
”T

. The fluid particles circle

counterclockwise around the z axis at angular velocity 2, while spiraling closer and closer, at an
exponential rate, to the xy plane. In the limit, they mover around the unit cirle in the xy plane
at constant speed 2.

9.1.16. Solve the initial value problem
du

dt
=

 
−6 1

1 −6

!
u, u(0) =

 
1
2

!
. Explain how or-

thogonality can help.

Solution: The coefficient matrix has eigenvalues λ1 = −5, λ2 = −7, and, since the coefficient

matrix is symmetric, orthogonal eigenvectors v1 =

 
1
1

!
, v2 =

 
−1

1

!
. The general solution is

u(t) = c1e−5 t
 

1
1

!
+ c2e−7 t

 
−1

1

!
.

For the initial conditions

u(0) = c1

 
1
1

!
+ c2

 
−1

1

!
=

 
1
2

!
,

we can use orthogonality to find

c1 =
〈u(0) ,v1 〉
‖v1 ‖2

= 2
3 , c2 =

〈u(0) ,v2 〉
‖v2 ‖2

= 1
2 .

Therefore, the solution is

u(t) = 3
2 e−5 t

 
1
1

!
+ 1

2 e−7 t
 
−1

1

!
.

9.1.17. (a) Find the eigenvalues and eigenvectors of K =

0
B@

1 −1 0
−1 2 −1

0 −1 1

1
CA. (b) Verify that the

eigenvectors are mutually orthogonal. (c) Based on part (a), is K positive definite, positive

semi-definite or indefinite? (d) Solve the initial value problem
du

dt
= K u, u(0) =

0
B@

1
2

−1

1
CA ,

using orthogonality to simplify the computations.

Solution:

(a) eigenvalues: λ1 = 0, λ2 = 1, λ3 = 3, eigenvectors: v1 =

0
B@

1
1
1

1
CA , v2 =

0
B@

1
0

−1

1
CA , v3 =

0
B@

1
−2

1

1
CA .

(b) The matrix is positive semi-definite since it has one zero eigenvalue and the rest are positive.
(c) The general solution is

u(t) = c1

0
B@

1
1
1

1
CA+ c2 et

0
B@

1
0

−1

1
CA+ c3 e3t

0
B@

1
−2

1

1
CA .

For the initial conditions

u(0) = c1

0
B@

1
1
1

1
CA+ c2

0
B@

1
0

−1

1
CA+ c3

0
B@

1
−2

1

1
CA =

0
B@

1
2

−1

1
CA = u0,
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we can use orthogonality to find

c1 =
〈u0 ,v1 〉
‖v1 ‖2

= 2
3 , c2 =

〈u0 ,v2 〉
‖v2 ‖2

= 1, c3 =
〈u0 ,v3 〉
‖v3 ‖2

= − 2
3 .

Therefore, the solution is u(t) =
“

2
3 + et − 2

3 e3t, 2
3 + 4

3 e3t, 2
3 − et − 2

3 e3t
”T

.

9.1.18. Demonstrate that one can also solve the initial value problem in Example 9.8 by writ-
ing the solution as a complex linear combination of the complex eigensolutions, and then
using the initial conditions to specify the coefficients.

Solution: The general complex solution to the system is

u(t) = c1 e−t

0
B@
−1

1
1

1
CA+ c2 e(1+2 i ) t

0
B@

1
i
1

1
CA+ c3 e(1−2i) t

0
B@

1
− i

1

1
CA .

Substituting into the initial conditions,

u(0) =

0
B@

−c1 + c2 + c3
c1 + i c2 − i c3
c1 + +c2 + c3

1
CA =

0
B@

2
−1
−2

1
CA and so

c1 = −2,

c2 = − 1
2 i ,

c3 = 1
2 i .

Thus, we obtain the same solution:

u(t) = −2e−t

0
B@
−1

1
1

1
CA− 1

2 i e(1+2 i ) t

0
B@

1
i
1

1
CA+ 1

2 i e(1−2i) t

0
B@

1
− i

1

1
CA =

0
B@

2 e−t + et sin 2 t
−2 e−t + et cos 2 t
−2 e−t + et sin 2 t

1
CA.

9.1.19. Determine whether the following vector-valued functions are linearly dependent or lin-
early independent:

(a)

 
1
t

!
,

 
−t
1

!
, (b)

 
1 + t

t

!
,

 
1 − t2

t − t2

!
, (c)

 
1
t

!
,

 
t
2

!
,

 
−t

t

!
, (d)

 
e− t

−et

!
,

 
−e− t

et

!
,

(e)

 
e2 t cos 3 t

−e2 t sin 3 t

!
,

 
e2 t sin 3 t
e2 t cos 3 t

!
, (f )

 
cos 3 t
sin 3 t

!
,

 
sin 3 t
cos 3 t

!
, (g)

0
B@

1
t

1 − t

1
CA,

0
B@

0
−2

2

1
CA,

0
B@

3
1 + 3 t
2 − 3 t

1
CA,

(h)

0
B@

et

−et

et

1
CA,

0
B@

et

et

−et

1
CA,

0
B@
−et

et

et

1
CA, (i)

0
B@

et

tet

t2 et

1
CA,

0
B@

t2 et

et

tet

1
CA,

0
B@

tet

t2 et

et

1
CA,

0
B@

et

et

et

1
CA.

Solution: Only (d), (g) are linearly dependent.

9.1.20. Let A be a constant matrix. Suppose u(t) solves the initial value problem
¦

u = Au,
u(0) = b. Prove that the solution to the initial value problem

¦

u = Au, u(t0) = b, is equal
to eu(t) = u(t − t0). How are the solution trajectories related?

Solution: Using the chain rule,
d

dt
eu(t) =

du

dt
(t − t0) = Au(t − t0) = A eu, and hence eu(t) solves

the differential equation. Moreover, eu(t0) = u(0) = b has the correct initial conditions. The
trajectories are the same curves, but eu(t) is always ahead of u(t) by an amount t0.

9.1.21. Prove that the general solution to a linear system
¦

u = Λu with diagonal coefficient

matrix Λ = diag (λ1, . . . , λn) is given by u(t) =
“

c1 eλ1 t, . . . , cn eλn t
”T

.

Solution:
du

dt
=
“

λ1 c1 eλ1 t, . . . , λn cn eλn t
”T

= Λu.

9.1.22. Show that if u(t) is a solution to
¦

u = Au, and S is a constant, nonsingular matrix of
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the same size as A, then v(t) = Su(t) solves the linear system
¦

v = Bv, where B = S AS−1

is similar to A.

Solution:
dv

dt
= S

du

dt
= S Au = S AS−1

v = Bv.

♦ 9.1.23. (i) Combine Exercises 9.1.21–22 to show that if A = S ΛS−1 is diagonalizable, then

the solution to
¦

u = Au can be written as u(t) = S
“

c1 eλ1 t, . . . , cn eλn t
”T

, where λ1, . . . , λn

are its eigenvalues and S = (v1 v2 . . . vn ) is the corresponding matrix of eigenvectors.
(ii) Write the general solution to the systems in Exercise 9.1.12 in this form.

Solution:
(i) This is an immediate consequence of the preceding two exercises.

(ii) (a) u(t) =

 
−1 1
1 1

! 
c1 e−2 t

c2 e2 t

!
; (b) u(t) =

 
−1 1
1 1

! 
c1 e3 t

c2 e− t

!
;

(c) u(t) =

 
−
√

2 i
√

2 i
1 1

!0
@ c1 e(1+ i

√
2) t

c2 e(1− i
√

2)t

1
A;

(d) u(t) =

0
B@

2 1 1
1 1 + i

q
2
3 1 − i

q
2
3

1 1 1

1
CA

0
BBB@

c1 e− t

c2 e(−1+ i
√

6) t

c3 e(−1− i
√

6)t

1
CCCA;

(e) u(t) =

0
B@

4 3 + 2 i 3 − 2 i
−2 −2 − i −2 + i
1 1 1

1
CA

0
BB@

c1
c2 e i t

c3 e− i t

1
CCA; (f ) u(t) =

0
BBB@

0 −1 0 1
−1 0 1 0
0 1 0 1
1 0 1 0

1
CCCA

0
BBBB@

c1 e−2 t

c2 e− t

c3 et

c4 e2 t

1
CCCCA

;

(g) u(t) =

0
BBBB@

−1 −1 3
2 i − 3

2 i

1 3 − 1
2 − 2 i − 1

2 + 2 i
0 0 1 + i 1 − i
0 0 1 1

1
CCCCA

0
BBBBB@

c1 et

c2 e− t

c3 e i t

c4 e− i t

1
CCCCCA

.

9.1.24. Find the general solution to the linear system
du

dt
= Au for the following incomplete

coefficient matrices: (a)

 
2 1
0 2

!
, (b)

 
2 −1
9 −4

!
, (c)

 
−1 −1

4 −5

!
, (d)

0
B@

4 −1 −3
−2 1 2

5 −1 −4

1
CA,

(e)

0
B@
−3 1 0

1 −3 −1
0 1 −3

1
CA, (f )

0
B@
−1 1 1

0 −1 1
0 0 −1

1
CA, (g)

0
BBB@

3 1 1 1
0 −1 0 1
0 0 3 1
0 0 0 −1

1
CCCA, (h)

0
BBB@

0 1 1 0
−1 0 0 1

0 0 0 1
0 0 −1 0

1
CCCA.

Solution: (a) u(t) =

 
c1e2 t + c2t e2 t

c2e2 t

!
, (b) u(t) =

0
@ c1e− t + c2

“
1
3 + t

”
e− t

3c1e− t + 3c2te− t

1
A,

(c) u(t) =

0
@ c1e−3 t + c2

“
1
2 + t

”
e−3 t

2c1e−3 t + 2c2te−3 t

1
A, (d) u(t) =

0
BB@

c1e− t + c2et + c3t et

−c1e− t − c3et

2c1e− t + c2et + c3t et

1
CCA,
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(e) u(t) =

0
BB@

c1e−3 t + c2t e−3 t + c3
“

1 + 1
2 t2

”
e−3 t

c2 e−3 t + c3t e−3 t

c1e−3 t + c2te−3 t + 1
2 c3t2e−3 t

1
CCA, (f )

0
BBBBB@

c1e3 t + c2te3 t − 1
4 c3e− t − 1

4 c4(t + 1)e− t

c3e− t + c4te− t

c2e3 t − 1
4 c4 e− t

c4 e− t

1
CCCCCA

,

(g)

0
BBB@

c1 cos t + c2 sin t + c3t cos t + c4t cos t
−c1 sin t + c2 cos t − c3t sin t + c4t cos t

c3 cos t + c4 sin t
−c3 sin t + c4 cos t

1
CCCA.

9.1.25. Find a first order system of ordinary differential equations that has the indicated vector-

valued function as a solution: (a)

 
et + e2 t

2et

!
, (b)

 
e− t cos 3 t

−3e− t sin 3 t

!
, (c)

 
1

t − 1

!
,

(d)

 
sin 2 t − cos 2 t

sin 2 t + 3 cos 2 t

!
, (e)

0
B@

e2 t

e−3 t

e2 t − e−3 t

1
CA, (f )

0
B@

sin t
cos t

1

1
CA, (g)

0
B@

t
1 − t2

1 + t

1
CA, (h)

0
B@

et sin t
2et cos t
et sin t

1
CA.

Solution: (a)
du

dt
=

 
2 − 1

2
0 1

!
u, (b)

du

dt
=

 
−1 1
−9 −1

!
u, (c)

du

dt
=

 
0 0
1 0

!
u,

(d)
du

dt
=

 
1 1

−5 −1

!
u, (e)

du

dt
=

0
B@

2 0 0
0 −3 0
2 3 0

1
CAu, (f )

du

dt
=

0
B@

0 1 0
−1 0 0

0 0 0

1
CAu,

(g)
du

dt
=

0
B@

0 1
2

1
2

−2 0 0
−2 0 0

1
CAu, (h)

du

dt
=

0
B@

1 1
2 0

−1 1 −1
0 1

2 1

1
CAu.

9.1.26. Which sets of functions in Exercise 9.1.19 can be solutions to a common first order,
homogeneous, constant coefficient linear system of ordinary differential equations? If so,
find a system they satisfy; if not, explain why not.

Solution: (a) No, since neither
dui

dt
is a linear combination of u1,u2. Or note that the trajec-

tories described by the solutions cross, violating uniqueness. (b) No, since polynomial solu-
tions a two-dimensional system can be at most first order in t. (c) No, since a two-dimensional

system has at most 2 linearly independent solutions. (d) Yes:
¦

u =

 
−1 0

0 1

!
u. (e) Yes:

¦

u =

 
2 3

−3 2

!
u. (f ) No, since neither

dui

dt
is a linear combination of u1,u2. Or note that

both solutions have the unit circle as their trajectory, but traverse it in opposite directions, vi-

olating uniqueness. (g) Yes:
¦

u =

0
B@

0 0 0
1 0 0

−1 0 0

1
CAu. (h) Yes:

¦

u = u. (i) No, since a three-

dimensional system has at most 3 linearly independent solutions.

9.1.27. Solve the third order equation
d3u

dt3
+ 3

d2u

dt2
+ 4

du

dt
+ 12u = 0 by converting it into a

first order system. Compare your answer with what you found in Exercise 9.1.2.

Solution: Setting u(t) =

0
B@

u(t)
¦

u(t)
¦¦

u(t)

1
CA, the first order system is

du

dt
=

0
B@

0 1 0
0 0 1

−12 −4 −3

1
CAu. The

eigenvalues of the coefficient matrix are −3,±2 i with eigenvectors

0
B@

1
−3

9

1
CA,

0
B@

1
±2 i
−4

1
CA and the
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resulting solution is u(t) =

0
BB@

c1 e−3 t + c2 cos 2 t + c3 sin 2 t

−3c1 e−3 t − 2c2 sin 2 t + 2c3 cos 2 t

9c1 e−3 t − 4c2 cos 2 t − 4c3 sin 2 t

1
CCA, which is the same as that

found in Exercise 9.1.2.

9.1.28. Solve the second order coupled system of ordinary differential equations
¦¦

u =
¦

u + u − v,
¦¦

v =
¦

v − u + v, by converting it into a first order system involving four variables.

Solution: Setting u(t) =

0
BBB@

u(t)
¦

u(t)
v(t)
¦

v(t)

1
CCCA, the first order system is

du

dt
=

0
BBB@

0 1 0 0
1 1 −1 0
0 0 0 1

−1 0 1 1

1
CCCA. The co-

efficient matrix has eigenvalues −1, 0, 1, 2 and eigenvectors

0
BBB@

1
−1
−1

1

1
CCCA,

0
BBB@

1
0
1
0

1
CCCA,

0
BBB@

1
1
1
1

1
CCCA,

0
BBB@

1
2

−1
−2

1
CCCA. Thus

u(t) =

0
BBBBB@

c1 e− t + c2 + c3 et + c4 e2 t

−c1 e− t + c3 et + 2c4 e2 t

−c1 e− t + c2 + c3 et − c4 e2 t

c1 e− t + c3 et − 2c4 e2 t

1
CCCCCA

, whose first and third components give the general solu-

tion u(t) = c1 e− t + c2 + c3 et + c4 e2 t, v(t) = −c1 e− t + c2 + c3 et − c4 e2 t to the second order
system.

9.1.29. Suppose that u(t) ∈ Rn is a polynomial solution to the constant coefficient linear sys-
tem

¦

u = Au. What is the maximal possible degree of u(t)? What can you say about A
when u(t) has maximal degree?

Solution: The degree is at most n−1, and this occurs if and only if A has only one Jordan chain
in its Jordan basis.

♦ 9.1.30. (a) Under the assumption that u1, . . . ,uk form a Jordan chain for the coefficient ma-
trix A, prove that the functions (9.15) are solutions to the differential equation

¦

u = Au.
(b) Prove that they are linearly independent.

Solution:
(a) By direct computation,

duj

dt
= λeλt

jX

i=1

tj−i

(j − i) !
wi + eλt

j−1X

i=1

tj−i−1

(j − i − 1) !
wi,

which equals

Auj = eλt
jX

i=1

tj−i

(j − i) !
Awi = eλt

2
4 tj−1

(j − 1) !
w1 +

jX

i=2

tj−i

(j − i) !
(λwi + wi−1)

3
5 .

(b) At t = 0, we have uj(0) = wj , and the Jordan chain vectors are linearly independent.

9.1.31. (a) Explain how to solve the inhomogeneous ordinary differential equation
du

dt
= Au+b

when b is a constant vector belonging to rng A. Hint : Look at v(t) = u(t)−u? where u? is
an equilibrium solution. (b) Use your method to solve

(i)
du

dt
= u − 3v + 1,

dv

dt
= −u − v, (ii)

du

dt
= 4v + 2,

dv

dt
= −u − 3.

Solution:
(a) The equilibrium solution satisfies Au? = −b, and so v(t) = u(t) − u? satisfies

¦

v =
¦

u =
Au + b = A(u − u?) = Av, which is the homogeneous system.
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(b) (i)
u(t) = −3c1 e2 t + c2 e−2 t − 1

4 ,

v(t) = c1 e2 t + c2 e−2 t + 1
4 .

(ii)
u(t) = −2c1 cos 2 t + 2c2 sin 2 t − 3,

v(t) = c1 sin 2 t + c2 cos 2 t − 1
2 .

9.2. Stability of Linear Systems.stability

9.2.1. Classify the following systems according to whether the origin is (i) asymptotically sta-

ble, (ii) stable, or (iii) unstable: (a)
du

dt
= −2u− v,

dv

dt
= u− 2v. (b)

du

dt
= 2u− 5v,

dv

dt
= u − v. (c)

du

dt
= −u − 2v,

dv

dt
= 2u − 5v. (d)

du

dt
= −2v,

dv

dt
= 8u.

(e)
du

dt
= −2u − v + w,

dv

dt
= −u − 2v + w,

dw

dt
= −3u − 3v + 2w. (f )

du

dt
= −u − 2v,

dv

dt
= 6u + 3v − 4w,

dw

dt
= 4u − 3w. (g)

du

dt
= 2u − v + 3w,

dv

dt
= u − v + w,

dw

dt
= −4u + v − 5w. (h)

du

dt
= u + v − w,

dv

dt
= −2u − 3v + 3w,

dw

dt
= −v + w.

Solution:
(a) asymptotically stable — eigenvalues −2 ± i ,

(b) unstable — eigenvalues 1
2 ±

√
11
2 i ,

(c) asymptotically stable — eigenvalue −3
(d) stable — eigenvalues ±4 i
(e) stable — eigenvalues 0,−1, with 0 complete
(f ) unstable — eigenvalues 1,−1 ± 2 i ,
(g) asymptotically stable — eigenvalues −1,−2,
(h) unstable — eigenvalues −1, 0, with 0 incomplete.

9.2.2. Write out the formula for the general real solution to the system in Example 9.16 and
verify its stability.

Solution:

u(t) = e− t
h “

c1 +

r
2
3 c2

”
cos

√
6 t +

“
−
r

2
3 c1 + c2

”
sin

√
6 t
i
+ 1

2 c3 e−2 t,

v(t) = e− t
h
c1 cos

√
6 t + c2 sin

√
6 t
i
+ 1

2 c3 e−2 t,

w(t) = e− t
h
c1 cos

√
6 t + c2 sin

√
6 t
i
+ c3 e−2 t.

9.2.3. Write out and solve the gradient flow system corresponding to the following quadratic
forms: (a) u2 + v2, (b) uv, (c) 4u2 − 2uv + v2, (d) 2u2 − uv − 2uw + 2v2 − vw + 2w2.

Solution:
(a)

¦

u = −2u,
¦

v = −2v, with solution u(t) = c1 e−2 t, v(t) = c2 e−2 t.

(b)
¦

u = −v,
¦

v = −u, with solution u(t) = c1 et + c2 e− t, v(t) = −c1 et + c2 e− t.

(c)
¦

u = −8u+2v,
¦

v = 2u−2v, with solution u(t) = −c1

√
13+3
2 e−(5+

√
13)t+c2

√
13−3
2 e−(5−

√
13)t,

v(t) = c1 e−(5+
√

13)t + c2 e−(5−
√

13)t.
(d)

¦

u = −4u + v + 2v,
¦

v = u − 4v + w,
¦

w = 2u + v − 4w, with solution u(t) =

−c1 e−6 t + c2 e−(3+
√

3) t + c3 e−(3−
√

3) t, v(t) = −(
√

3 + 1)c2 e−(3+
√

3) t

+ (
√

3 − 1)c3 e−(3−
√

3) t, w(t) = c1 e−6 t + c2 e−(3+
√

3) t + c3 e−(3−
√

3) t.
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9.2.4. Write out and solve the Hamiltonian systems corresponding to the first three quadratic
forms in Exercise 9.2.3. Which of them are stable?

Solution:
(a)

¦

u = 2v,
¦

v = −2u, with solution u(t) = c1 cos 2 t + c2 sin 2 t, v(t) = −c1 sin 2 t + c2 cos 2 t.
Stable.

(b)
¦

u = u,
¦

v = −v, with solution u(t) = c1 et, v(t) = c2 e− t. Unstable.

(c)
¦

u = −2u + 2v,
¦

v = −8u + 2v, with solution u(t) = 1
4 (c1 −

√
3 c2) cos 2

√
3 t + 1

4 (
√

3 c1 +

c2) sin 2
√

3 t, v(t) = c1 cos 2
√

3 t + c2 sin 2
√

3 t. Stable.

9.2.5. Which of the following 2 × 2 systems are gradient flows? Which are Hamiltonian sys-
tems? In each case, discuss the stability of the zero solution.

(a)
¦

u = −2u + v,
¦

v = u − 2v,
(b)

¦

u = u − 2v,
¦

v = −2u + v,
(c)

¦

u = v,
¦

v = u,
(d)

¦

u = −v,
¦

v = u,
(e)

¦

u = −u − 2v,
¦

v = −2u − v.

Solution: (a) Gradient flow. Asymptotically stable. (b) Neither. Unstable. (c) Hamiltonian
flow. Unstable. (d) Hamiltonian flow. Stable. (e) Neither. Unstable.

9.2.6. True or false: A nonzero linear 2 × 2 gradient flow cannot be a Hamiltonian flow.

Solution: True. If K =

 
a b
b c

!
, then we must have

∂H

∂v
= au+bv,

∂H

∂u
= −bu−cv. Therefore,

by equality of mixed partials,
∂2H

∂u ∂v
= a = −c. But if K > 0, both diagonal entries must be

positive, a, c > 0, which is a contradiction.

9.2.7. (a) Show that the matrix A =

0
BBB@

0 1 1 0
−1 0 0 1

0 0 0 1
0 0 −1 0

1
CCCA has λ = ± i as incomplete complex

conjugate eigenvalues. (b) Find the general real solution to
¦

u = Au. (c) Explain the be-
havior of a typical solution. Why is the zero solution not stable?

Solution:
(a) The characteristic equation is λ4 + 2λ2 + 1 = 0, and so ± i are double eigenvalues. How-

ever, each has only one linearly independent eigenvector, namely ( 1,± i , 0, 0 )T . The

general solution is u(t) =

0
BBB@

c1 cos t + c2 sin t + c3t cos t + c4t cos t
−c1 sin t + c2 cos t − c3t sin t + c4t cos t

c3 cos t + c4 sin t
−c3 sin t + c4 cos t

1
CCCA.

(b) All solutions with c23 + c24 6= 0 spiral off to ∞ as t → ±∞. Since these can start out
arbitrarily close to 0, the zero solution is not stable.

9.2.8. Let A be a real 3 × 3 matrix, and assume that the linear system
¦

u = Au has a periodic
solution of period P . Prove that every periodic solution of the system has period P . What
other types of solutions can there be? Is the zero solution necessarily stable?

Solution: Every solution to a real first order system of period P comes from complex conjugate
eigenvalues ±2π i /P . A 3 × 3 real matrix has at least one real eigenvalue λ1. Therefore, if the
system has a solution of period P , its eigenvalues are λ1 and ±2π i /P . If λ1 = 0, every solution
has period P . Otherwise, the solutions with no component in the direction of the real eigen-
vector all have period P , and are the only periodic solutions, proving the result. The system is
stable (but never asymptotically stable) if and only if the real eigenvalue λ1 ≤ 0.

9.2.9. Are the conclusions of Exercise 9.2.8 valid when A is a 4 × 4 matrix?
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Solution: No, since a 4 × 4 matrix could have two distinct complex conjugate pairs of purely
imaginary eigenvalues, ±2π i /P1,±2π i /P2, and would then have periodic solutions of periods
P1 and P2. The general solution in such a case is quasi-periodic; see Section 9.5 for details.

9.2.10. Let A be a real 5 × 5 matrix, and assume that A has eigenvalues i ,− i ,−2,−1 (and no
others). Is the zero solution to the linear system

¦

x = Ax necessarily stable? Explain. Does
your answer change if A is 6 × 6?

Solution: The system is stable since ± i must be simple eigenvalues since a 5 × 5 matrix has 5
eigenvalues counting multiplicities, and the multiplicities of complex conjugate eigenvalues are
the same. A 6 × 6 system can have a complex conjugate pair of incomplete double eigenvalues
± i in addition to the simple real eigenvalues −1,−2, and in that case the origin is unstable.

9.2.11. True or false: The system
¦

u = −Hn u, where Hn is the n × n Hilbert matrix (1.69), is
asymptotically stable.

Solution: True since Hn > 0 by Proposition 3.34.

9.2.12. True or false: If K is positive semi-definite, then the zero solution to
¦

u = −Ku is stable.

Solution: True, because all eigenvalues, including 0, of a symmetric matrix are complete.

9.2.13. Let u(t) solve
¦

u = Au. Let v(t) = u(− t) be its time reversal. (a) Write down the
linear system

¦

v = Bv satisfied by v(t). Then classify the following statements as true or
false. Explain your answers. (b) If

¦

u = Au is asymptotically stable, then
¦

v = Bv is
unstable. (c) If

¦

u = Au is unstable, then
¦

v = Bv is asymptotically stable. (d) If
¦

u = Au
is stable, then

¦

v = Bv is stable.

Solution: (a)
¦

v = Bv = −Av. (b) True, since the eigenvalues of B = −A are minus the
eigenvalues of A, and so will all have positive real parts. (c) False. For example, a saddle point,
with one positive and one negative eigenvalue is still unstable when going backwards in time.
(d) False, unless all the eigenvalues of A and hence B are complete and purely imaginary or
zero.

9.2.14. True or false: If A is a symmetric matrix, then the system
¦

u = −A2u has an asymp-
totically stable equilibrium solution.

Solution: The eigenvalues of −A2 are all of the form −λ2 < 0 where λ is an eigenvalue of A.
Thus, if A is nonsingular, the result is true, while if A is singular, then the equilibrium solutions
are stable, but not asymptotically stable.

9.2.15. True or false: (a) If tr A > 0, then the system
¦

u = Au is unstable. (b) If det A > 0,
then the system

¦

u = Au is unstable.

Solution: (a) True, since the sum of the eigenvalues equals the trace, so at least one must be

positive or have positive real part in order that the trace be positive. (b) False. A =

 
−1 0

0 −2

!

is an example of a asymptotically stable system with positive determinant.

9.2.16. Consider the differential equation
¦

u = −Ku, where K is positive semi-definite. (a) Find
all equilibrium solutions. (b) Prove that all non-constant solutions decay exponentially
fast to some equilibrium. What is the decay rate? (c) Is the origin (i) stable, (ii) asymptotically
stable, or (iii) unstable? (d) Prove that, as t → ∞, the solution u(t) converges to the or-
thogonal projection of its initial vector a = u(0) onto ker K.

Solution:
(a) Every v ∈ ker K gives an equilibrium solution u(t) ≡ v.
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(b) The general solution has the form

u(t) = c1 e−λ1 t
v1 + · · · + cr e−λr t

vr + cr+1vr+1 + · · · + cn vn,

where λ1, . . . , λr > 0 are the positive eigenvalues of K with (orthogonal) eigenvectors
v1, . . . ,vr, while vr+1, . . . ,vn form a basis for the null eigenspace, i.e., ker K. Thus, as

t → ∞, u(t) → cr+1vr+1 + · · · + cn vn ∈ ker K, which is an equilibrium solution.

(c) The origin is asymptotically stable if K is positive definite, and stable if K is positive
semi-definite.

(d) Note that

a = u(0) = c1v1 + · · · + cr vr + cr+1vr+1 + · · · + cn vn.

Since the eigenvectors are orthogonal, cr+1vr+1+· · ·+cn vn is the orthogonal projection
of a onto ker K.

9.2.17. (a) Let H(u, v) = au2 + b uv + cv2 be a quadratic function. Prove that the non-
equilibrium trajectories of the associated Hamiltonian system and those of the gradient flow
are mutually orthogonal, i.e., they always intersect at right angles. Verify this result for
(i) u2 + 3v2, (ii) uv by drawing representative trajectories of both systems on the same
graph.

Solution:
(a) The tangent to the Hamiltonian trajectory at a point ( u, v )T is v = ( ∂H/∂v,−∂H/∂u )T

while the tangent to the gradient flow trajectory is w = ( ∂H/∂u, ∂H/∂v )T . Since
v · w = 0, the tangents are orthogonal.

(b)

9.2.18. True or false: If the Hamiltonian system for H(u, v) is stable, then the corresponding
gradient flow

¦

u = −∇H is stable.

Solution: False. Only the positive definite Hamiltonians lead to stable gradient flows.

9.2.19. Suppose that u(t) satisfies the gradient flow system (9.20). (a) Prove that
d

dt
q(u) =

− ‖Ku ‖2. (b) Explain why if u(t) is any nonconstant solution to the gradient flow, then
q(u(t)) is a strictly decreasing function of t, thus quantifying how fast a gradient flow de-
creases energy.

Solution:
(a) When q(u) = 1

2 uT Ku then

d

dt
q(u) = 1

2
¦

u
T Ku + 1

2 u
T K

¦

u =
¦

u
T Ku = − (Ku)T Ku = − ‖Ku ‖2.

(b) Since Ku 6= 0 for any u 6= 0, assuming u is not the equilibrium solution,
d

dt
q(u) =

− ‖Ku ‖2 < 0 and hence q(u) is a decreasing function of t. Indeed, for K > 0, the
solution u → 0, and q(u) → 0 exponentially fast.

♥ 9.2.20. The law of conservation of energy states that the energy in a Hamiltonian system is
constant on solutions. (a) Prove that if u(t) satisfies the Hamiltonian system (9.21), then
H(u(t)) = c is a constant, and hence solutions u(t) move along the level sets of the Hamil-
tonian or energy function. Explain how the value of c is determined by the initial condi-
tions. (b) Plot the level sets of H in the particular case H(u, v) = u2 − 2uv + 2v2 and
verify that they coincide with the solution trajectories.

Solution:
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(a) By the multivariable calculus chain rule

d

dt
H(u(t), v(t)) =

∂H

∂u

du

dt
+

∂H

∂v

dv

dt
=

∂H

∂u

∂H

∂v
+

∂H

∂v

 
− ∂H

∂u

!
≡ 0.

Since H(u(t), v(t)) ≡ c, its value is c = H(u0, v0) where u(t0) = u0, v(t0) = v0 are the
initial conditions.

(b)

♦ 9.2.21. Prove Lemma 9.14.

Solution: Let us do the case f(t) = tk eµt cos ν t; replacing the cosine by a sine is a trivial modi-

fication of the proof. If µ > 0 then | f(t) | → ∞ since eµt → ∞, tk → ∞ for k > 0 and is equal
to 1 for k = 0, while cosine term is bounded | cos ν t | ≤ 1. If µ = 0, then | f(t) | ≤ 1 when k = 0,

while | f(t) | → ∞ if k > 0. If µ < 0, then | f(t) | ≤ tk eµt = eµt+k log t → 0 as t → ∞, since
µt + k log t → −∞ when µ < 0. Q.E.D.

♦ 9.2.22. Prove Proposition 9.17.

Solution: An eigensolution u(t) = eλtv with λ = µ+ i ν is bounded by ‖u(t) ‖ ≤ ‖v ‖eµt. More-

over, since exponentials grow faster than polynomials, any solution of the form u(t) = eλt p(t)

where p(t) is a vector of polynomials can be bounded by C eat for any a > µ = Re λ and some
C > 0. Since every solution can be written as a linear combination of such solutions, every term
is bounded by a multiple of eat provided a > a? = max Re λ and so, by the triangle inequality,
is their sum. If the maximal eigenvalues are complete, then there are no polynomial terms, and
we can use the eigensolution bound, so we can set a = a?. Q.E.D.

9.3. Two-Dimensional Systems.2dode

9.3.1. For each the following: (a) Write the system as
¦

u = Au. (b) Find the eigenvalues and
eigenvectors of A. (c) Find the general real solution of the system. (d) Draw the phase
portrait, indicating its type and stability properties: (i)

¦

u1 = −u2,
¦

u2 = 9u1,
(ii)

¦

u1 = 2u1 − 3u2,
¦

u2 = u1 − u2, (iii)
¦

u1 = 3u1 − 2u2,
¦

u2 = 2u1 − 2u2.

Solution:

(i) A =

 
0 −1
9 0

!
; λ1 = 3 i , v1 =

 
i
3

!
, λ2 = −3 i , v2 =

 
− i

3

!
,

u1(t) = c1 cos 3 t + c2 sin 3 t, u2(t) = 3c1 sin 3 t − 3c2 cos 3 t; center.

(ii) A =

 
−2 3
−1 1

!
; λ1 = 1

2 + i
√

3
2 , v1 =

 
3
2 + i

√
3

2
1

!
, λ2 = 1

2 − i
√

3
2 , v2 =

 
3
2 − i

√
3

2
1

!
,

u1(t) = e− t/2
» „

3
2 c1 −

√
3

2 c2

«
cos

√
3

2 t +
„ √

3
2 c1 + 3

2 c2

«
sin

√
3

2 t
–
,

u2(t) = e− t/2
»
c1 cos

√
3

2 t + c2 sin
√

3
2 t

–
; stable focus

(iii) A =

 
3 −2
2 −2

!
, λ1 = −1, λ2 = 2., v1 =

 
1
2

!
, and v2 =

 
2
1

!
,

u1(t) = c1 e− t + 2c2 e2 t, u2(t) = 2c1 e− t + c2 e2 t; saddle point.

9.3.2. For each of the following systems

(i)
¦

u =

 
2 −1
3 −2

!
u, (ii)

¦

u =

 
1 −1
5 −3

!
u, (iii)

¦

u =

 
−3 5/2

−5/2 2

!
u.
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(a) Find the general real solution. (b) Using the solution formulas obtained in part (a),
plot several trajectories of each system. On your graphs, identify the eigenlines (if rele-
vant), the direction of increasing t on the trajectories. (c) Write down the type and sta-
bility properties of the system.

Solution:

(i) u(t) = c1 e− t
 

1
3

!
+ c2 et

 
1
1

!
; saddle point.

(ii) u(t) = c1 e− t
 

2 cos t − sin t
5 cos t

!
+ c2 e− t

 
2 sin t + cos t

5 sin t

!
; stable focus.

(iii) u(t) = c1 e− t/2
 

1
1

!
+ c2 e− t/2

 
t

t + 2
5

!
; stable improper node.

9.3.3. Classify the following systems, and sketch their phase portraits.

(a)

du

dt
= −u + 4v,

dv

dt
= u − 2v.

(b)

du

dt
= −2u + v,

dv

dt
= u − 4v.

(c)

du

dt
= 5u + 4v,

dv

dt
= u + 2v.

(d)

du

dt
= −3u − 2v,

dv

dt
= 3u + 2v.

Solution:

(a) For the matrix A =

 
−1 4

1 −2

!
, tr A = −3 < 0, det A = −2 < 0, ∆ = 17 > 0, so this is

an unstable saddle point.

(b) For the matrix A =

 
−2 1

1 −4

!
, tr A = −6 < 0, det A = 7 > 0, ∆ = 8 > 0, so this is a

stable node.

(c) For the matrix A =

 
5 4
1 2

!
, tr A = 7 > 0, det A = 6 > 0, ∆ = 25 > 0, so this is an

unstable node.

(d) For the matrix A =

 
−3 −2

3 2

!
, tr A = −1 < 0, det A = 0, ∆ = 1 > 0, so this is a stable

line.

9.3.4. Sketch the phase portrait for the following systems: (a)

¦

u1 = u1 − 3u2,
¦

u2 = −3u1 + u2.

(b)

¦

u1 = 3u1 − 4u2,
¦

u2 = u1 − u2.
(c)

¦

u1 = u1 + u2,
¦

u2 = 4u1 − 2u2.
(d)

¦

u1 = u1 + u2,
¦

u2 = u2.
(e)

¦

u1 = 3
2 u1 + 5

2 u2,
¦

u2 = 5
2 u1 − 3

2 u2.

Solution:

9.3.5. (a) Solve the initial value problem
du

dt
=

 
−1 2
−1 −3

!
u, u(0) =

 
1
3

!
.

(b) Sketch a picture of your solution curve u(t), indicating the direction of motion.
(c) Is the origin (i) stable? (ii) asymptotically stable? (iii) unstable? (iv) none of these?

Justify your answer.

Solution: (a) u(t) =
“

e−2 t cos t + 7e−2 t sin t, 3e−2 t cos t − 4e−2 t sin t
”T

; (b) (c) asymptotically

stable since the coefficient matrix has tr A = −4 < 0, det A = 5 > 0, ∆ = −4 < 0, and hence it
is a stable focus, or, equivalently, the eigenvalues −2 ± i have negative real part.

♦ 9.3.6. Justify the solution formulas (9.30) and (9.31).

Solution: For (9.30), the complex solution

eλt
v = e(µ+ i ν) t(w + i z) = eµt

h
cos(ν t)w − sin(ν t) z

i
+ eµt

h
sin(ν t)w + cos(ν t) z

i
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leads to the general real solution

u(t) = c1 eµt
h
cos(ν t)w − sin(ν t) z

i
+ c2 eµt

h
sin(ν t)w + cos(ν t) z

i

= eµt
h
c1 cos(ν t) + c2 sin(ν t)

i
w + eµt

h
−c1 sin(ν t) + c2 cos(ν t)

i
z

= r eµt
h
cos(ν t − σ)w + sin(ν t − σ) z

i
,

where r =
q

c21 + c22 and tan σ = c2/c1.
To justify (9.31), we differentiate

du

dt
=

d

dt

h
(c1 + c2 t)eλt

v + c2 eλt
w
i

= λ
h
(c1 + c2 t)eλt

v + c2 eλt
w
i
+ c2 eλt

v,

while
Au = (c1 + c2 t)eλt Av + c2 eλt Aw = (c1 + c2 t)eλt λv + c2 eλt (λw + v)

by the Jordan chain condition. Therefore
¦

u = Au.

9.3.7. Which of the 14 possible two-dimensional phase portraits can occur for the phase plane
equivalent (9.7) of a second order scalar ordinary differential equation?

Solution: All except for IV(a–c), the stars and the trivial case.

9.4. Matrix Exponentials.ME

9.4.1. Find the exponentials etA of the following 2 × 2 matrices:

(a)

 
2 −1
4 −3

!
, (b)

 
0 1
1 0

!
, (c)

 
0 −1
1 0

!
, (d)

 
0 1
0 0

!
, (e)

 
−1 2
−5 5

!
, (f )

 
1 2

−2 −1

!
.

Solution:

(a)

0
B@

4
3 et − 1

3 e−2 t − 1
3 et + 1

3 e−2 t

4
3 et − 4

3 e−2 t − 1
3 et + 4

3 e−2 t

1
CA; (b)

0
B@

1
2 et + 1

2 e− t 1
2 et − 1

2 e− t

1
2 et − 1

2 e− t 1
2 et + 1

2 e− t

1
CA =

 
cosh t sinh t
sinh t cosh t

!
;

(c)

 
cos t − sin t
sin t cos t

!
; (d)

 
1 t
0 1

!
; (e)

 
e2 t cos t − 3e2 t sin t 2e2 t sin t

−5e2 t sin t e2 t cos t + 3e2 t sin t

!
;

(f )

 
e− t + 2 te− t 2 te− t

−2 te− t e− t − 2 te− t

!
.

9.4.2. Determine the matrix exponential etA for the following matrices:

(a)

0
B@

0 0 0
2 0 1
0 −1 0

1
CA, (b)

0
B@

3 −1 0
−1 2 −1

0 −1 3

1
CA, (c)

0
B@
−1 1 1
−2 −2 −2

1 −1 −1

1
CA, (d)

0
B@

0 0 1
1 0 0
0 1 0

1
CA.

Solution:

(a)

0
B@

1 0 0
2 sin t cos t sin t

2 cos t − 2 − sin t cos t

1
CA;

(b)

0
BBBB@

1
6 et + 1

2 e3 t + 1
3 e4 t 1

3 et − 1
3 e4 t 1

6 et − 1
2 e3 t + 1

3 e4 t

1
3 et − 1

3 e4 t 2
3 et + 1

3 e4 t 1
3 et − 1

3 e4 t

1
6 et − 1

2 e3 t + 1
3 e4 t 1

3 et − 1
3 e4 t 1

6 et + 1
2 e3 t + 1

3 e4 t

1
CCCCA

;
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(c)

0
BBBB@

e−2 t + te−2 t te−2 t te−2 t

− 1 + e−2 t e−2 t −1 + e−2 t

1 − e−2 t − te−2 t −te−2 t 1 − te−2 t

1
CCCCA

;

(d)

0
BBBBBB@

1
3 et + 2

3 e− t/2 cos
√

3
2 t 1

3 et − 1
3 e− t/2cos

√
3

2 t − 1√
3

e− t/2sin
√

3
2 t

1
3 et − 1

3 e− t/2cos
√

3
2 t + 1√

3
e− t/2sin

√
3

2 t 1
3 et + 2

3 e− t/2cos
√

3
2 t

1
3 et − 1

3 e− t/2cos
√

3
2 t − 1√

3
e− t/2sin

√
3

2 t 1
3 et − 1

3 e− t/2cos
√

3
2 t + 1√

3
e− t/2sin

√
3

2 t

1
3 et − 1

3 e− t/2cos
√

3
2 t + 1√

3
e− t/2sin

√
3

2 t

1
3 et − 1

3 e− t/2cos
√

3
2 t − 1√

3
e− t/2sin

√
3

2 t

1
3 et + 2

3 e− t/2cos
√

3
2 t

1
CCCCCA

.

9.4.3. Verify the determinant formula of Lemma 9.28 for the matrices in Exercises 9.4.1 and 9.4.2.

Solution: 9.4.1 (a) det etA = e− t = et tr A, (b) det etA = 1 = et tr A, (c) det etA = 1 =

et tr A, (d) det etA = 1 = et tr A, (e) det etA = e4 t = et tr A, (f ) det etA = e−2 t = et tr A.

9.4.2 (a) det etA = 1 = et tr A, (b) det etA = e8 t = et tr A, (c) det etA = e−4 t = et tr A,

(d) det etA = 1 = et tr A.

9.4.4. Find eA when A =

(a)

 
5 −2

−2 5

!
, (b)

 
1 −2
1 1

!
, (c)

 
2 −1
4 −2

!
, (d)

0
B@

1 0 0
0 −2 0
0 0 −5

1
CA, (e)

0
B@

0 1 −2
−1 0 2

2 −2 0

1
CA.

Solution: (a)

0
B@

1
2 (e3 + e7) 1

2 (e3 − e7)

1
2 (e3 − e7) 1

2 (e3 + e7)

1
CA, (b)

0
B@

e cos
√

2 −
√

2 e sin
√

2

1√
2

e sin
√

2 e cos
√

2

1
CA, (c)

 
3 −1
4 −1

!
,

(d)

0
B@

e 0 0
0 e−2 0
0 0 e−5

1
CA, (e)

0
BBBB@

4
9 + 5

9 cos 3 4
9 − 4

9 cos 3 + 1
3 sin 3 2

9 − 2
9 cos 3 − 2

3 sin 3

4
9 − 4

9 cos 3 − 1
3 sin 3 4

9 + 5
9 cos 3 2

9 − 2
9 cos 3 + 2

3 sin 3

2
9 − 2

9 cos 3 + 2
3 sin 3 2

9 − 2
9 cos 3 − 2

3 sin 3 1
9 + 8

9 cos 3

1
CCCCA

.

9.4.5. Solve the indicated initial value problems by first exponentiating the coefficient matrix

and then applying formula (9.40): (a)
du

dt
=

 
0 −1
1 0

!
u, u(0) =

 
1

−2

!
,

(b)
du

dt
=

 
3 −6
4 −7

!
u, u(0) =

 
−1

1

!
, (c)

du

dt
=

0
B@
−9 −6 6

8 5 −6
−2 1 3

1
CAu, u(0) =

0
B@

0
1
0

1
CA.

Solution:

(a) u(t) =

 
cos t − sin t
sin t cos t

! 
1

−2

!
=

 
cos t + 2 sin t
sin t − 2 cos t

!
;

(b) u(t) =

 
3e− t − 2e−3 t −3e− t + 3e−3 t

2e− t − 2e−3 t −2e− t + 3e−3 t

! 
−1

1

!
=

 
−6e− t + 5e−3 t

−4e− t + 5e−3 t

!
;

ds 9/9/04 485 c© 2004 Peter J. Olver



(c)

u(t) =

0
BBBB@

3e− t − 2 cos 3 t − 2 sin 3 t 3e− t − 3 cos 3 t − sin 3 t 2 sin 3 t

− 2e− t + 2 cos 3 t + 2 sin 3 t −2e− t + 3 cos 3 t + sin 3 t −2 sin 3 t

2e− t − 2 cos 3 t 2e− t − 2 cos 3 t + sin 3 t cos 3 t + sin 3 t

1
CCCCA

0
BBBB@

0

1

0

1
CCCCA

=

0
BBBB@

3e− t − 3 cos 3 t − sin 3 t

− 2e− t + 3 cos 3 t + sin 3 t

2e− t − 2 cos 3 t + sin 3 t

1
CCCCA

.

9.4.6. What is etO when O is the n × n zero matrix?

Solution: etO = I for all t.

9.4.7. Find all matrices A such that etA = O.

Solution: There are none, since etA is always invertible.

9.4.8. Let A =

 
0 −2π

2π 0

!
. Show that eA = I .

Solution:

etA =

 
cos 2πt − sin 2πt
sin 2πt cos 2πt

!
, and hence, when t = 1, eA =

 
cos 2π − sin 2π
sin 2π cos 2π

!
=

 
1 0
0 1

!
.

9.4.9. (a) Let A be a 2 × 2 matrix such that tr A = 0 and δ =
√

det A > 0. Prove that

eA = (cos δ) I +
sin δ

δ
A. Hint : Use Exercise 8.2.50. (b) Establish a similar formula when

det A < 0. (c) What if det A = 0?

Solution: (a) According to Exercise 8.2.50, A2 = −δ2 I since tr A = 0, det A = δ2. Thus, by

induction, A2m = (−1)mδ2m I , A2m+1 = (−1)mδ2m A.

etA =
∞X

n=0

tn

n!
An =

∞X

m=0

(−1)m
(δ t)2m

(2m)!
I +

∞X

m=0

(−1)m
t2m+1 δ2m

(2m + 1)!
A = cos δ t +

sin δ t

δ
.

Setting t = 1 proves the formula. (b) eA = (cosh δ) I +
sinh δ

δ
A where det A = −δ2.

(c) eA = I + A since A2 = O by Exercise 8.2.50.

♦ 9.4.10. Explain in detail why the columns of etA form a basis for the solution space to the
system

¦

u = Au.

Solution: Assuming A is an n×n matrix, since etA is a matrix solution, its n individual columns

must be solutions. Moreover, the columns are linearly independent since e0A = I is nonsingu-
lar. Therefore, they form a basis for the n-dimensional solution space.

9.4.11. True or false: (a) eA−1

=
“

eA
”−1

, (b) eA+A−1

= eA eA−1

.

Solution: (a) False, unless A−1 = −A. (b) True, since A and A−1 commute.

♦ 9.4.12. Prove formula (9.42). Hint : Fix s and prove that, as functions of t, both sides of the
equation define matrix solutions with the same initial conditions. Then use uniqueness.

Solution: Fix s and let U(t) = e(t+s) A, V (t) = etA es A. Then, by the chain rule,
¦

U = A e(t+s) A =

A U , while, by the matrix Leibniz rule (9.39),
¦

V = A etA es A = A V . Moreover, U(0) = es A = V (0).
Thus U(t) and V (t) solve the same initial value problem, hence, by uniqueness, U(t) = V (t) for
all t. Q.E.D.
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9.4.13. Prove that A commutes with its exponential: A etA = etAA. Hint : Prove that both

are matrix solutions to
¦

U = A U with the same initial conditions.

Solution: Set U(t) = A etA, V (t) = etA A. Then, by the matrix Leibniz formula (9.39),
¦

U =

A2 etA = A U ,
¦

V = A etA A = A V , while U(0) = A = V (0). Thus U(t) and V (t) solve the same
initial value problem, hence, by uniqueness, U(t) = V (t) for all t. Q.E.D.

9.4.14. Prove that et(A−λ I ) = e− tλ etA by showing that both sides are matrix solutions to
the same initial value problem.

Solution: Set U(t) = e− tλ etA. Then,
¦

U = −λe− tλ etA + e− tλ AetA = (A − λ I )U. Moreover,

U(0) = I . Therefore, by the the definition of matrix exponential, U(t) = et(A−λ I ).

♦ 9.4.15. (a) Prove that the exponential of the transpose of a matrix is the transpose of its ex-

ponential: etAT

= (etA)T . (b) What does this imply about the solutions to the linear

systems
¦

u = Au and v = AT v?

Solution: (a) Let V (t) = (etA)T . Then
dU

dt
=

 
d

dt
etA

!T

= (etA A)T = AT (etA)T = AT V ,

and V (0) = I . Therefore, by the the definition of matrix exponential, V (t) = etAT

.

(b) The columns of etA form a basis for the solutions to
¦

u = Au, while its rows are a basis for

the solutions to v = AT v.

♦ 9.4.16. Prove that if A = S BS−1 are similar matrices, then so are their exponentials:

etA = S etB S−1.

Solution: First note that An = S BnS−1. Therefore,

etA =
∞X

n=0

tn

n!
An =

∞X

n=0

tn

n!
S BnS−1 = S

0
@

∞X

n=0

tn

n!
Bn

1
AS−1 = S etB S−1.

An alternative proof uses the fact that etA and S etB S−1 both satisfy the initial value problem
¦

U = AU = S BS−1U, U(0) = I , and hence, by uniqueness, they are equal.

♦ 9.4.17. Diagonalization provides an alternative method for computing the exponential of a
complete matrix. (a) First show that if D = diag (d1, . . . , dn) is a diagonal matrix, so is

etD = diag (etd1 , . . . , etdn). (b) Second, prove that if A = S DS−1 is diagonalizable, so is

etA = S etD S−1. (c) When possible, use diagonalization to compute the exponentials of
the matrices in Exercises 9.4.1–2.

Solution: (a)
d

dt
diag (etd1 , . . . etdn) = diag (d1 etd1 , . . . , dn etdn) = Ddiag (etd1 , . . . , etdn).

Moreover, at t = 0, we have diag (e0d1 , . . . , e0dn) = I . Therefore, diag (etd1 , . . . , etdn) satisfies

the defining properties of etD. (b) See Exercise 9.4.16. (c) 9.4.1:

(a)

 
1 1
1 4

! 
et 0
0 e−2 t

! 
1 1
1 4

!−1

=

0
B@

4
3 et − 1

3 e−2 t − 1
3 et + 1

3 e−2 t

4
3 et − 4

3 e−2 t − 1
3 et + 4

3 e−2 t

1
CA;

(b)

 
1 −1
1 1

! 
et 0
0 e− t

! 
1 −1
1 1

!−1

=

0
B@

1
2 et + 1

2 e− t 1
2 et − 1

2 e− t

1
2 et − 1

2 e− t 1
2 et + 1

2 e− t

1
CA;

(c)

 
i − i
1 1

! 
e i t 0

0 e− i t

! 
i − i
1 1

!−1

=

 
cos t − sin t
sin t cos t

!
;
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(d) not diagonalizable;

(e)

 
3
5 − 1

5 i 3
5 + 1

5 i
1 1

! 
e(2+ i )t 0

0 e(2− i )t

! 
3
5 − 1

5 i 3
5 + 1

5 i
1 1

!−1

=

 
e2 t cos t − 3e2 t sin t 2e2 t sin t

−5e2 t sin t e2 t cos t + 3e2 t sin t

!
;

(f ) not diagonalizable.

9.4.2:

(a)

0
B@
−1 0 0

0 − i i
2 1 1

1
CA

0
B@

1 0 0
0 e i t 0
0 0 e− i t

1
CA

0
B@
−1 0 0

0 − i i
2 1 1

1
CA

−1

=

0
B@

1 0 0
2 sin t cos t sin t

2 cos t − 2 − sin t cos t

1
CA;

(b)

0
B@

1 −1 1
2 0 −1
1 1 1

1
CA

0
B@

et 0 0
0 e3 t 0
0 0 e4 t

1
CA

0
B@

1 −1 1
2 0 −1
1 1 1

1
CA

−1

=

0
BBBB@

1
6 et + 1

2 e3 t + 1
3 e4 t 1

3 et − 1
3 e4 t 1

6 et − 1
2 e3 t + 1

3 e4 t

1
3 et − 1

3 e4 t 2
3 et + 1

3 e4 t 1
3 et − 1

3 e4 t

1
6 et − 1

2 e3 t + 1
3 e4 t 1

3 et − 1
3 e4 t 1

6 et + 1
2 e3 t + 1

3 e4 t

1
CCCCA

;

(c) not diagonalizable;

(d)

0
BBBB@

1 − 1
2 − i

√
3

2 − 1
2 + i

√
3

2

1 − 1
2 + i

√
3

2 − 1
2 − i

√
3

2

1 1 1

1
CCCCA

0
BBB@

1 0 0

0 e−(
1
2− i

√
3

2 )t 0

0 0 e−(
1
2+ i

√
3

2 )t

1
CCCA

0
BBBB@

1 − 1
2 − i

√
3

2 − 1
2 + i

√
3

2

1 − 1
2 + i

√
3

2 − 1
2 − i

√
3

2

1 1 1

1
CCCCA

−1

,

which is the same as before.

♦ 9.4.18. Justify the matrix Leibniz rule (9.39) using the formula for matrix multiplication.

Solution: Let M have size p × q and N have size q × r. The derivative of the (i, j) entry of
M(t) N(t) is

d

dt

qX

k=1

mik(t) nkj(t) =
qX

k=1

dmik

dt
nkj(t) +

qX

k=1

mik(t)
dnkj

dt
.

The first sum is the (i, j) entry of
dM

dt
N while the second is the (i, j) entry of M

dN

dt
. Q.E.D.

♦ 9.4.19. Let A be a real matrix. (a) Explain why eA is a real matrix. (b) Prove that det eA > 0.

Solution: (a) The exponential series is a sum of real terms. Alternatively, one can choose a real
basis for the solution space to construct the real matrix solution U(t) before substituting into

formula (9.41). (b) According to Lemma 9.28, det eA = etr A > 0 since a real scalar exponential
is always positive.

9.4.20. Show that tr A = 0 if and only if det et A = 1 for all t.

Solution: Lemma 9.28 implies det et A = et tr A = 1 if and only if tr A = 0.

♦ 9.4.21. Prove that if λ is an eigenvalue of A, then et λ is an eigenvalue of etA. What is the
eigenvector?
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Solution: Let u(t) = et λ v where v is the eigenvector of A. Then,
du

dt
= λ et λ

v = λu = Au,

and hence, by (9.40), u(t) = etA u(0) = etA v. Therefore, equating the two formulas for u(t),

we conclude that etA v = et λ v, which proves that v is an eigenvector of etA with eigenvalue et λ.

9.4.22. Show that the origin is an asymptotically stable equilibrium solution to
¦

u = Au if and

only if lim
t→∞

etA = O.

Solution: The origin is an asymptotically stable if and only if all solutions tend to zero as t → ∞.

Thus, all columns of etA tend to 0 as t → ∞, and hence lim
t→∞

etA = O. Conversely, if lim
t→∞

etA = O,

then any solution has the form u(t) = etA c, and hence u(t) → 0 as t → ∞, proving asymptotic
stability.

9.4.23. Let A be a real square matrix and eA its exponential. Under what conditions does the

linear system
¦

u = eA u have an asymptotically stable equilibrium solution?

Solution: According to Exercise 9.4.21, the eigenvalues of eA are eλ = eµ cos ν + i eµ sin ν, where

λ = µ + i ν are the eigenvalues of A. For eλ to have negative real part, we must have cos ν < 0,

and so ν = Im λ must lie between
“

2k + 1
2

”
π < ν <

“
2k + 3

2

”
π for some k ∈ Z.

9.4.24. Prove that if U(t) is any matrix solution to
dU

dt
= A U , so is eU(t) = U(t) C where C is

any constant matrix (of compatible size).

Solution: Indeed, the columns of eU(t) are linear combinations of the columns of U(t), and hence
automatically solutions to the linear system. Alternatively, we can prove this directly using the

Leibniz rule (9.39). Therefore,
d eU
dt

=
d

dt

h
U(t) C

i
=

dU

dt
C = A U C = A eU , since C is constant.

♦ 9.4.25. (a) Show that U(t) satsifies the matrix differential equation
¦

U = U B if and only if

U(t) = C etB where C = U(0).
(b) Show that if U(0) is nonsingular, then U(t) also satisfies a matrix differential equation

of the form
¦

U = A U . Is A = B? Hint : Use Exercise 9.4.16.

Solution:

(a) If U(t) = C etB , then
dU

dt
= C etB B = U B, and so U satisfies the differential equation.

Moreover, C = U(0). Thus, U(t) is the unique solution to the initial value problem
¦

U = U B, U(0) = C. Q.E.D.

(b) By Exercise 9.4.16, U(t) = C etB = etA C where A = C BC−1. Thus,
¦

U = AU as
claimed. Note that A = B if and only if A commutes with U(0).

9.4.26. (a) Suppose u1(t), . . . ,un(t) are vector-valued functions whose values at each point t
are linearly independent vectors in Rn. Show that they form a basis for the solution space
of a homogeneous constant coefficient linear system

¦

u = Au if and only if each duj/dt is
a linear combination of u1(t), . . . ,un(t). (b) Show that if u(t) solves

¦

u = Au, so do its

derivatives dju/dtj , j = 1, 2, . . . . (c) Show that a function u(t) belongs to the solution

space of a homogeneous constant coefficient linear system
¦

u = Au if and only if
dnu

dtn
is a

linear combination of u,
du

dt
, . . . ,

dn−1u

dtn−1
.

Solution:

(a) Let U(t) = (u1(t) . . . un(t) ) be the corresponding matrix-valued function. Then
duj

dt
=
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nX

i=1

bijui for all j = 1, . . . , n, if and only if
¦

U = U B where bij are the entries of B.

Therefore, by Exercise 9.4.25,
¦

U = AU , where A = C BC−1. Q.E.D.

(b) By induction, if
dj+1u

dtj+1
=

d

dt

0
@ dju

dtj

1
A = A

dju

dtj
, then, differentiating the equation with

respect to t, we find d/dt
“

dj+1u/dtj+1
”

= d/dt
“

Adju/dtj
”

= Adj+1u/dtj+1, which

proves the induction step.
(c)

9.4.27. Prove that if A =

 
B O
O C

!
is a block diagonal matrix, then so is etA =

 
etB O

O etC

!
.

Solution: Write the matrix solution to the initial value problem
dU

dt
= A U, U(0) = I , in block

form U(t) = etA =

 
V (t) W (t)
Y (t) Z(t)

!
. Then the differential equation decouples into

dV

dt
= BV,

dW

dt
= O,

dY

dt
= O,

dZ

dt
= C Z, with initial conditions V (0) = I , W (0) = O, Y (0) = O, Z(0) =

I . Thus, W, Y are constant, while V, Z satisfy the initial value problem for the matrix exponen-

tial, and so V (t) = etB , W (t) = O, Y (t) = O, Z(t) = etC . Q.E.D.

♦ 9.4.28. (a) Prove that if J0,n is an n×n Jordan block matrix with 0 diagonal entries, cf. (8.47),

then etJ0,n =

0
BBBBBBBBBBBBBBBBBBBB@

1 t
t2

2

t3

6
. . .

tn

n !

0 1 t
t2

2
. . .

tn−1

(n − 1) !

0 0 1 t . . .
tn−2

(n − 2) !
...

...
...

. . .
. . .

...

0 0 0 . . . 1 t
0 0 0 . . . 0 1

1
CCCCCCCCCCCCCCCCCCCCA

.

(b) Determine the exponential of a general Jordan block matrix Jλ,n. Hint : Use Exercise

9.4.14. (c) Explain how you can use the Jordan canonical form to compute the exponential
of a matrix. Hint : Use Exercise 9.4.27.

Solution:
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(a)

d

dt

0
BBBBBBBBBBBBBBBBBBBB@

1 t
t2

2

t3

6
. . .

tn

n !

0 1 t
t2

2
. . .

tn−1

(n − 1) !

0 0 1 t . . .
tn−2

(n − 2) !
...

...
...

. . .
. . .

...

0 0 0 . . . 1 t
0 0 0 . . . 0 1

1
CCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBB@

0 1 t
t2

2
. . .

tn−1

(n − 1) !

0 0 1 t . . .
tn−2

(n − 2) !

0 0 0 1 . . .
tn−3

(n − 3) !
...

...
...

. . .
. . .

...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

1
CCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBB@

0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
. . .

...

...
...

...
. . .

. . .
...

0 0 0 . . . 0 1

0 0 0 . . . 0 0

1
CCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBB@

1 t
t2

2

t3

6
. . .

tn

n !

0 1 t
t2

2
. . .

tn−1

(n − 1) !

0 0 1 t . . .
tn−2

(n − 2) !
...

...
...

. . .
. . .

...

0 0 0 . . . 1 t
0 0 0 . . . 0 1

1
CCCCCCCCCCCCCCCCCCCCA

,

Thus, U(t) satisfies the initial value problem
¦

U = J0,n U, U(0) = I , that characterizes

the matrix exponential, so U(t) = etJ0,n . Q.E.D.

(b) Since Jλ,n = λ I + J0,n, by Exercise 9.4.14, etJλ,n = etλ etJ0,n , i.e., multiply all entries

in the previous formula by etλ.
(c) According to Exercises 9.4.17, 27, if A = S J S−1 where J is the Jordan canonical form,

then etA = S etJ S−1, and etJ is a block diagonal matrix given by the exponentials of
its individual Jordan blocks, computed in part (b).

♦ 9.4.29. Prove that if λ is an eigenvalue of A with multiplicity k, then etλ is an eigenvalue of

etA with the same multiplicity. Hint : Combine the Jordan canonical form (8.49) with Ex-
ercises 9.4.17, 28.

Solution: If J is a Jordan matrix, then, by the arguments in Exercise 9.4.28, etJ is upper trian-

gular with diagonal entries given by etλ where λ is the eigenvalue appearing on the diagonal of
the corresponding Jordan block of A. In particular, the multiplicity of λ, which is the number

of times it appears on the diagonal of J , is the same as the multiplicity of etλ for etJ . More-

over, since etA is similar to etJ , its eigenvalues are the same, and of the same multiplicities.
Q.E.D.

♥ 9.4.30. By a (natural) logarithm of a matrix B we mean a matrix A such that eA = B.
(a) Explain why only nonsingular matrices can have a logarithm.
(b) Comparing Exercises 9.4.6–8, explain why the matrix logarithm is not unique.

(c) Find all real logarithms of the 2 × 2 identity matrix I =

 
1 0
0 1

!
. Hint : Use Exercise

9.4.21.

Solution: (a) All matrix exponentials are nonsingular by the remark after (9.43). (b) Both
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A = O and A =

 
0 −2π

2π 0

!
have the identity matrix as their exponential eA = I . (c) If

eA = I and λ is an eigenvalue of A, then eλ = 1, since 1 is the only eigenvalue of I . Therefore,
the eigenvalues of A must be integer multiples of 2π i . Since A is real, the eigenvalues must be
complex conjugate, and hence either both 0, or ±2nπ i for some positive integer n. In the lat-
ter case, since the characteristic equation of A is λ2 + 4n2π2, A must have zero trace and deter-

minant 4n2π2, hence A =

 
a b
c −a

!
with a2 + bc = −4n2π2. If A has both eigenvalues zero, it

must be complete, and hence A = O.

9.4.31. True or false: The solution to the non-autonomous initial value problem
¦

u = A(t)u,

u(0) = b, is u(t) = e
R

t

0
A(s) ds b.

Solution: Even though this formula is correct in the scalar case, it is false in general. Would
that life were so simple!

9.4.32. Solve the following initial value problems: (a)

¦

u1 = 2u1 − u2, u1(0) = 0,
¦

u2 = 4u1 − 3u2 + e2 t, u2(0) = 0.

(b)

¦

u1 = −u1 + 2u2 + et, u1(1) = 1,
¦

u2 = 2u1 − u2 + et, u2(1) = 1.
(c)

¦

u1 = −u2, u1(0) = 0,
¦

u2 = 4u1 + cos t, u2(0) = 1.

(d)
¦

u = 3u + v + 1, u(1) = 1,
¦

v = 4u + t, v(1) = −1.
(e)

¦

p = p + q + t, p(0) = 0,
¦

q = −p − q + t, q(0) = 0.

Solution:
(a) u1(t) = 1

3 et − 1
12 e−2 t − 1

4 e2 t, u2(t) = 1
3 et − 1

3 e−2 t;

(b) u1(t) = et−1 − et + t et, u2(t) = et−1 − et + t et;

(c) u1(t) = 1
3 cos 2 t − 1

2 sin 2 t − 1
3 cos t, u2(t) = cos 2 t + 2

3 sin 2 t − 1
3 sin t;

(d) u(t) = 13
16 e4 t + 3

16 − 1
4 t, v(t) = 13

16 e4 t − 29
16 + 3

4 t;

(e) p(t) = 1
2 t2 + 1

3 t3, q(t) = 1
2 t2 − 1

3 t3.

9.4.33. Solve the following initial value problems:

(a)

¦

u1 = −2u2 + 2u3, u1(0) = 1,
¦

u2 = −u1 + u2 − 2u3 + t, u2(0) = 0,
¦

u3 = −3u1 + u2 − 2u3 + 1, u3(0) = 0.

(b)

¦

u1 = u1 − 2u2, u1(0) = −1,
¦

u2 = −u2 + e− t, u2(0) = 0,
¦

u3 = 4u1 − 4u2 − u3, u3(0) = −1.

Solution:
(a) u1(t) = 1

2 cos 2 t + 1
4 sin 2 t + 1

2 − 1
2 t, u2(t) = 2e− t − 1

2 cos 2 t − 1
4 sin 2 t − 3

2 + 3
2 t,

u3(t) = 2e− t − 1
4 cos 2 t − 3

4 sin 2 t − 7
4 + 3

2 t;

(b) u1(t) = − 3
2 et + 1

2 e− t + te− t, u2(t) = te− t, u3(t) = −3et + 2e− t + 2 te− t.

9.4.34. (a) Write down an integral formula for the solution to the initial value problem
du

dt
= Au + b, u(0) = 0, where b is a constant vector.

(b) Suppose b ∈ rng A. Do you recover the solution you found in Exercise 9.1.31?

Solution:

(a) u(t) =
Z t

0
e(t−s) A

b ds.

ds 9/9/04 492 c© 2004 Peter J. Olver



(b) Yes, since if b = Ac, then the integral can be evaluated as

u(t) =
Z t

0
e(t−s) A Ac ds = −e(t−s) A

c

˛̨
˛̨
t

s=0
= etA

c − c = v(t) − u
?,

where v(t) = etA c solves the homogeneous system
¦

v = Av, while u? = c is the equilib-
rium solution.

9.4.35. Suppose that λ is not an eigenvalue of A. Show that the inhomogeneous system
¦

u = Au + eλt v has a solution of the form u?(t) = eλt w, where w is a constant vector.
What is the general solution?

Solution: Set w = (A − λ I )−1v. Then u?(t) = eλt w is a solution. The general solution is

u(t) = eλt w + z(t) = eλt w + etAb, where b is any vector.

9.4.36. Find the one-parameter groups generated by the following matrices and interpret geo-
metrically: What are the trajectories? What are the fixed points?

(a)

 
2 0
0 0

!
, (b)

 
0 0
1 0

!
, (c)

 
0 3

−3 0

!
, (d)

 
0 −1
4 0

!
, (e)

 
0 1
1 0

!
.

Solution:

(a)

 
e2 t 0

0 1

!
— scalings in the x direction, which expand when t > 0 and contract when

t < 0. The trajectories are half-lines parallel to the x axis. Points on the y axis are left
fixed.

(b)

 
1 0
t 1

!
— shear transformations in the y direction. The trajectories are lines parallel

to the y axis. Points on the y axis are fixed.

(c)

 
cos 3 t sin 3 t

− sin 3 t cos 3 t

!
— rotations around the origin, starting in a clockwise direction for

t > 0. The trajectories are the circles x2 + y2 = c. The origin is fixed.

(d)

 
cos 2 t − sin 2 t

2 sin 2 t 2 cos 2 t

!
— elliptical rotations around the origin. The trajectories are the

ellipses x2 + 1
4 y2 = c. The origin is fixed.

(e)

 
cosh t sinh t
sinh t cosh t

!
— hyperbolic rotations. These are area-preserving scalings: for t > 0,

expanding in the direction x = y and contracting by the reciprocal factor in the direc-
tion x = −y; the reverse holds for t < 0. The trajectories are the semi-hyperbolas
x2 − y2 = c and the four rays x = ±y. The origin is fixed.

9.4.37. Write down the one-parameter groups generated by the following matrices and inter-
pret. What are the trajectories? What are the fixed points?

(a)

0
B@

2 0 0
0 1 0
0 0 0

1
CA, (b)

0
B@

0 0 1
0 0 0
0 0 0

1
CA, (c)

0
B@

0 0 −2
0 0 0
2 0 0

1
CA, (d)

0
B@

0 1 0
−1 0 0

0 0 1

1
CA, (e)

0
B@

0 0 1
0 0 0
1 0 0

1
CA.

Solution:

(a)

0
B@

e2 t 0 0
0 et 0
0 0 1

1
CA — scalings by a factor λ = et in the y direction and λ2 = e2 t in the x

direction. The trajectories are the semi-parabolas x = cy2, z = d for c, d constant, and
the half-lines x 6= 0, y = 0, z = d and x = 0, y 6= 0, z = d. Points on the z axis are left
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fixed.

(b)

0
B@

1 0 t
0 1 0
0 0 1

1
CA — shear transformations in the x direction, with magnitude proportional

to the z coordinate. The trajectories are lines parallel to the x axis. Points on the xy
plane are fixed.

(c)

0
B@

cos 2 t 0 − sin 2 t
0 1 0

sin 2 t 0 cos 2 t

1
CA — rotations around the y axis. The trajectories are the circles

x2 + z2 = c, y = d. Points on the y axis are fixed.

(d)

0
B@

cos t sin t 0
− sin t cos t 0

0 0 et

1
CA — spiral motions around the z axis. The trajectories are the posi-

tive and negative z axes, circles in the xy plane, and exponential cylindrical spirals (he-
lices) winding around the z axis. The only fixed point is the origin.

(e)

0
B@

cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

1
CA — hyperbolic rotations in the xz plane, cf. Exercise 9.4.36(e). The

trajectories are the semi-hyperbolas x2 − z2 = c, y = d, and the rays x = ±z, y = d.
The points on the y axis are fixed.

9.4.38. (a) Find the one-parameter group of rotations generated by the skew-symmetric matrix

A =

0
B@

0 1 1
−1 0 −1
−1 1 0

1
CA. (b) As noted above, etA represents a family of rotations around a

fixed axis in R3. What is the axis?

Solution:

(a)

0
BBBB@

1
3 + 2

3 cos
√

3 t 1
3 − 1

3cos
√

3 t + 1√
3
sin

√
3 t − 1

3 + 1
3cos

√
3 t + 1√

3
sin

√
3 t

1
3 − 1

3cos
√

3 t − 1√
3
sin

√
3 t 1

3 + 2
3 cos

√
3 t − 1

3 + 1
3cos

√
3 t − 1√

3
sin

√
3 t

− 1
3 + 1

3cos
√

3 t − 1√
3
sin

√
3 t − 1

3 + 1
3cos

√
3 t + 1√

3
sin

√
3 t 1

3 + 2
3 cos

√
3 t

1
CCCCA

.

(b) The axis is the null eigenvector: ( 1, 1,−1 )T .

♥ 9.4.39. Let 0 6= v ∈ R3. (a) Show that the cross product L
v
[x ] = v × x defines a linear trans-

formation on R3. (b) Find the 3 × 3 matrix representative A
v

of L
v

and show that it is
skew-symmetric. (c) Show that every non-zero skew-symmetric 3 × 3 matrix defines such
a cross product map. (d) Show that ker A

v
is spanned by v. (e) Justify the fact that the

matrix exponentials etAv are rotations around the axis v. Thus, the cross product with a
vector serves as the infinitesimal generator of the one-parameter group of rotations around v.

Solution:
(a) Given c, d ∈ R, x,y ∈ R3, we have

L
v
[cx + dy ] = v × (cx + dy) = cv × x + dv × y = cL

v
[x ] + dL

v
[y ],

proving linearity.

(b) If v = ( a, b, c )T , then A
v

=

0
B@

0 c −b
−c 0 a

b −a 0

1
CA = −AT

v
.

(c) Since A
v
v = 0, also etAvv = v, and hence the rotations fix v.

(d) If v = r e3, then Ar e3
=

0
B@

0 −r 0
r 0 0
0 0 0

1
CA and hence etAr e3 =

0
B@

cos r t − sin r t 0
sin r t cos r t 0

0 0 1

1
CA,

which represent rotations around the z axis. more generally, given v with r = ‖v ‖, let
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Q be any rotation matgrix such that Qv = re3. Then Q(v × x) = (Qv) × (Qx). Thus,
if

¦

x = v× x and we set y = Qx then
¦

y = re3 × y. Thus, the solutions x(t) are obtained
by rotating the solutions y(t) and so are given by rotations around the axis v.

♥ 9.4.40. Let A =

0
B@

0 −1 0
1 0 0
0 0 0

1
CA, b =

0
B@

0
0
1

1
CA. (a) Show that the solution to the linear system

¦

x = Ax represents a rotation of R3 around the z axis. What is the trajectory of a point
x0? (b) Show that the solution to the inhomogeneous system

¦

x = Ax + b represents a

screw motion of R3 around the z axis. What is the trajectory of a point x0? (c) More gen-

erally, given 0 6= a ∈ R3, show that the solution to
¦

x = a × x + a represents a family of
screw motions along the axis a.

Solution:

(a) The solution is x(t) =

0
B@

x0 cos t − y0 sin t
x0 sin t + y0 cos t

z0

1
CA and so the trajectory of the point ( x0, y0, z0 )T

is the circle of radius r0 =
q

x2
0 + y2

0 at height z0 cenetered on the z axis. The points on
the z axis, with r0 = 0, are fixed.

(b) For the inhomogeneous system, the solution is x(t) =

0
B@

x0 cos t − y0 sin t
x0 sin t + y0 cos t

z0 + t

1
CA, which is a

screw motion. If r0 = 0, the trajectory is the z axis; otherwise it is a cylindrical helices
of radius r0 spiraling up the z axis.

(c) The solution to the linear system
¦

x = a × x is x(t) = Rtx0 where Rt is a rotation
thbrough angle t‖a ‖ around the axis a. The solution to the inhomogeneous system is
the screw motion x(t) = Rtx0 + ta.

♥ 9.4.41. Given a unit vector ‖u ‖ = 1 in R3, let A = A
u

be the corresponding skew-symmetric
3× 3 matrix that satisfies Ax = u×x, as in Exercise 9.4.39. (a) Prove the Euler–Rodrigues

formula etA = I + (sin t)A + (1 − cos t) A2. Hint : Use the matrix exponential series (9.45).

(b) Show that etA = I if and only if t is an integer multiple of 2π. (c) Generalize parts
(a) and (b) to a non-unit vector v 6= 0.

Solution:

(a) Since A =

0
B@

0 c −b
−c 0 a

b −a 0

1
CA, we have A2 =

0
B@
−b2 − c2 ab ac

ab −a2 − c2 bc
ac bc −a2 − b2

1
CA while

A3 = −(a2 + b2 + c2)U = −U . Therefore, by induction, U2m+1 = (−1)m U and

U2m = (−1)m−1 U2 for m ≥ 1. Thus

etU =
∞X

n=0

tn

n!
Un = I +

∞X

m=0

(−1)m
t2m+1

(2m + 1)!
U −

∞X

m=1

(−1)m
t2m

(2m)!
U2.

The power series are, respectively, those of sin t and cos t − 1 (since the constant term
doesn’t appear), proving the formula.

(b) Since u 6= 0, the matrices I , A, A2 are linearly independent and hence, by the Euler–

Rodrigues formula, etA = I if and only if cos t = 1, sin t = 0, so t must be an integer
multiple of 2π.

(c) If v = ru with r = ‖v ‖, then

etAv = etrAu = I +(sin tr)A
u
+(1 − cos tr) A2

u
= I +

sin t ‖v ‖
‖v ‖ A

v
+

 
1 − cos t ‖v ‖

‖v ‖2

!
A2

v
,

which equals the identity matrix if and only if t = 2kπ ‖v ‖ for some integer k.
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9.4.42. Choose two of the groups in Exercise 9.4.36 or 9.4.37, and determine whether or not
they commute by looking at their infinitesimal generators. Then verify your conclusion by
directly computing the commutator of the corresponding matrix exponentials.

Solution:

♦ 9.4.43. Let A and B be n×n matrices. Prove that (a) tr(AB) = tr(BA); (b) the commutator
matrix C = [ A, B ] = AB − BA has zero trace: tr C = 0.

Solution:

(a) The diagonal entries of AB are
nX

j =1

aij bji, so tr(AB) =
nX

i=1

nX

j =1

aij bji; the diagonal

entries of BA are
nX

j =1

bij aji, so tr(BA) =
nX

i=1

nX

j =1

bij aji. These double summations

are clearly equal.
(b) tr C = tr(AB − BA) = tr AB − tr BA = 0 by part (a).

9.4.44. (a) Prove that the commutator of two upper triangular matrices is upper triangular.
(b) Prove that the commutator of two skew symmetric matrices is skew symmetric.
(c) Is the commutator of two symmetric matrices symmetric?

Solution:
(a) If U, V are upper triangular, so are U V and V U and hence so is [ U, V ] = U V − V U .

(b) If AT = −A, BT = −B then

[ A, B ]T = (AB − BA)T = BT AT − AT BT = BA − AB = − [ A, B ].

(c) No.

♦ 9.4.45. Prove the Jacobi identity [ [ A, B ], C ] + [ [ C, A ], B ] + [ [ B, C ], A ] = O is valid for any
three n × n matrices.

Solution:
(a)

h
[ A, B ], C

i
= (AB − BA)C − C (AB − BA) = ABC − BAC − C AB + C BA,

h
[ C, A ], B

i
= (C A − AC)B − B (C A − AB) = C AB − AC B − BC A + BAC,

h
[ B, C ], A

i
= (BC − C B)A − A(BC − C B) = BC A − C BA − ABC + AC B,

9.4.46. Let A be an n × n matrix whose last row has all zero entries. Prove that the last row
of etA is eT

n = ( 0, . . . , 0, 1 ).

Solution: In the matrix system
dU

dt
= AU , the equations in the last row are

dunj

dt
= 0 for j =

1, . . . , n, and hence the last row of U(t) is constant. In particular, for the exponential matrix

solution U(t) = etA the last row must equal the last row of the identity matrix U(0) = I , which

is eT
n .

9.4.47. Let A =

 
B c
0 0

!
be in block form, where B is an n × n matrix, c ∈ Rn, while 0 de-

notes the zero row vector with n entries. Show that its matrix exponential is also in block

form etA =

 
etB f(t)
0 1

!
. Can you find a formula for f(t)?

Solution: Write the matrix solution as U(t) =

 
V (t) f(t)
g(t) w(t)

!
, where f(t) is a column vector,
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g(t) a row vector, and w(t) is a scalar function. Then the matrix system
dU

dt
= AU decouples

into
dV

dt
= BV,

df

dt
= B f + cw,

dg

dt
= 0,

dw

dt
= 0, with initial conditions V (0) = I , f(0) = O,

g(0) = O, w(0) = 1. Thus, g ≡ 0, w ≡ 1, are constant, V (t) = etB . The equation for f(t)

becomes
df

dt
= B f + c, f(0) = 0, and the solution is given in Exercise 9.4.34. Q.E.D.

♦ 9.4.48. According to Exercise 7.3.9, any (n + 1) × (n + 1) matrix of the block form

 
A b
0 1

!

in which A is an n × n matrix and b ∈ Rn can be identified with the affine transforma-
tion F [x ] = Ax + a on Rn. Exercise 9.4.47 shows that every matrix in the one-parameter

group etB generated by B =

 
A b
0 0

!
has such a form, and hence we can identify etB as

a family of affine maps on Rn. Describe the affine transformations of R2 generated by the
following matrices:

(a)

0
B@

0 0 1
0 0 0
0 0 0

1
CA, (b)

0
B@

1 0 0
0 −2 0
0 0 0

1
CA, (c)

0
B@

0 −1 0
1 0 1
0 0 0

1
CA, (d)

0
B@

1 0 1
0 −1 −2
0 0 0

1
CA.

Solution: (a)

 
x + t

y

!
: translations in x direction. (b)

 
et x

e−2 t y

!
: scaling in x and y direc-

tions by respective factors λ = et, λ−2 = e−2 t. (c)

 
(x + 1) cos t − y sin t − 1

(x + 1) sin t + y cos t

!
: rotations

around the point

 
−1

0

!
. (d)

 
et (x + 1) − 1

e− t (y + 2) − 2

!
: scaling in x and y directions by reciprocal

factors centered at the point

 
−1
−2

!
.

9.5. Dynamics of Structures.vib

9.5.1. A 6 kilogram mass is connected to a spring with stiffness 21 kg/sec2. Determine the
frequency of vibration in Hertz (cycles per second).

Solution: The vibrational frequency is ω =
q

21/6 ≈ 1.87083, and so the number of Hertz is

ω/(2π) ≈ .297752.

9.5.2. The lowest audible frequency is about 20 Hertz = 20 cycles per second. How small a
mass would need to be connected to a unit spring to produce a fast enough vibration to be
audible? (As always, we assume the spring has negligible mass, which is probably not so
reasonable in this
situation.)

Solution: We need
ω

2π
=

1

2π
√

m
= 20 and so m =

1

1600 π2
≈ .0000633257.

9.5.3. Graph the following functions. Which are periodic? quasi-periodic? If periodic, what
is the (minimal) period? (a) sin 4 t + cos 6 t, (b) 1 + sin π t, (c) cos 1

2 π t + cos 1
3 π t,
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(d) cos t+cos π t, (e) sin 1
4 t+sin 1

5 t+sin 1
6 t, (f ) cos t+cos

√
2 t+cos 2 t, (g) sin t sin 3 t.

Solution:

(a) Periodic of period π; -2 2 4 6 8 10

-2

-1

1

2

(b) Periodic of period 2;

-2 2 4 6 8 10-0.5

0.5
1

1.5
2

2.5

(c) Periodic of period 12;
-5 5 10 15 20 25

-1.5
-1

-0.5

0.5
1

1.5
2

(d) Quasi-periodic;
-5 5 10 15 20 25

-2

-1

1

2

(e) Periodic of period 120π;
100 200 300 400 500

-3

-2

-1

1

2

3

(f ) Quasi-periodic;
10 20 30 40 50 60

-2

-1

1

2

3

(g)
sin t sin 3 t = cos 2 t − cos 4 t,

and so is periodic of period π;

-5 5 10 15

-1

-0.75

-0.5

-0.25

0.25

0.5

9.5.4. What is the minimal period of a function of the form cos
p
q t + cos

r
s t, assuming that

each fraction is in lowest terms, i.e., its numerator and denominator have no common factors.

Solution: The minimal period is
π`

2k−1
, where ` is the least common multiple of q and s, while

2k is the largest power of 2 appearing in both p and r.

9.5.5. (a) Determine the natural frequencies of the Newtonian system
d2u

dt2
+

 
3 −2

−2 6

!
u = 0.

(b) What is the dimension of the space of solutions? Explain your answer. (c) Write out
the general solution. (d) For which initial conditions is the resulting motion
(i) periodic? (ii) quasi-periodic? (iii) both? (iv) neither? Justify your answer.

Solution: (a)
√

2 ,
√

7 ; (b) 4 — each eigenvalue gives two linearly independent solutions;
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(c) u(t) = r1 cos(
√

2 t − δ1)

 
2
1

!
+ r2 cos(

√
7 t − δ2)

 
−1

2

!
; (d) The solution is periodic if

only one frequency is excited, i.e., r1 = 0 or r2 = 0; all other solutions are quasiperiodic.

9.5.6. Answer Exercise 9.5.5 for the system
d2u

dt2
+

 
73 36
36 52

!
u = 0.

Solution: (a) 5, 10; (b) 4 — each eigenvalue gives two linearly independent solutions;

(c) u(t) = r1 cos(5 t − δ1)

 
−3

4

!
+ r2 cos(10 t − δ2)

 
4
3

!
; (d) All solutions are periodic; when

r1 (e) ne0, the period is 2
5 π, while when r1 = 0 the period is 1

5 π.

9.5.7. Find the general solution to the following second order systems:

(a)
d2u

dt2
= −3u + 2v,

d2v

dt2
= 2u − 3v. (b)

d2u

dt2
= −11u − 2v,

d2v

dt2
= −2u − 14v.

(c)
d2u

dt2
+

0
B@

1 0 0
0 4 0
0 0 9

1
CAu = 0, (d)

d2u

dt2
=

0
B@
−6 4 −1

4 −6 1
−1 1 −11

1
CAu.

Solution:
(a) u(t) = r1 cos(t − δ1) + r2 cos(

√
5 t − δ2), v(t) = r1 cos(t − δ1) − r2 cos(

√
5 t − δ2);

(b)
u(t) = r1 cos(

√
10 t − δ1) − 2r2 cos(

√
15 t − δ2),

v(t) = 2r1 cos(
√

10 t − δ1) + r2 cos(
√

15 t − δ2);

(c) u(t) = ( r1 cos(t − δ1), r2 cos(2 t − δ2), r3 cos(3 t − δ1) )T ;

(d) u(t) = r1 cos(
√

2 t − δ1)

0
B@

1
1
0

1
CA+ r2 cos(3 t − δ2)

0
B@
−1

1
1

1
CA+ r3 cos(

√
12 t − δ3)

0
B@

1
−1

2

1
CA.

9.5.8. Show that a single mass that is connected to both the top and bottom supports by two
springs of stiffnesses c1, c2 will vibrate in the same manner as if it were connected to only
one support by a spring with the combined stiffness c = c1 + c2.

Solution: The system has stiffness matrix K = ( 1 −1 )

 
c1 0
0 c2

! 
1

−1

!
= (c1 + c2) and so the

dynamical equation is m
¦¦

u + (c1 + c2) u = 0, which is the same as a mass connected to a single
spring with stiffness c = c1 + c2.

9.5.9. Two masses are connected by three springs to top and bottom supports. Can you find a
collection of spring constants c1, c2, c3 such that all vibrations are periodic?

Solution: Yes. For example, c1 = 16, c1 = 36, c1 = 37, leads to K =

 
52 −36

−36 73

!
with

eigenvalues λ1 = 25, λ2 = 100, and hence natural frequencies ω1 = 5, ω2 = 10. Since ω2 is a

rational multiple of ω1, every solution is periodic with period 2
5 π or 1

5 π. Further examples can

be constructed by solving the matrix equation K =

 
c1 + c2 −c2
−c2 c2 + c3

!
= QT ΛQ for c1, c2, c3,

where Λ is a diagonal matrix with entries ω2, r2 ω2 where r ∈ Q is a rational number, and Q is
a suitable orthogonal matrix, making sure that c1, c2, c3 are all positive.

♠ 9.5.10. Suppose the bottom support in the mass-spring chain in Example 9.36 is removed.
(a) Do you predict that the vibration rate will (i) speed up, (ii) slow down, or (iii) stay
the same? (b) Verify your prediction by computing the new vibrational frequencies.
(c) Suppose the middle mass is displaced by a unit amount and then let go. Compute and
graph the solutions in both situations. Discuss what you observe.
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Solution: (a) The vibrations slow down. (b) The vibrational frequencies are ω1 = .44504,
ω2 = 1.24698, ω3 = 1.80194, each of which is slightly larger than the fixed end case, which are

ω1 =
q

2 −
√

2 = .76537, ω2 =
√

2 = 1.41421, ω3 =
q

2 +
√

2 = 1.84776. (c)

♥ 9.5.11. Find the vibrational frequencies for a mass–spring chain with n identical masses, con-
nected by n + 1 identical springs to both top and bottom supports. Is there any sort of
limiting behavior as n → ∞? Hint : See Exercise 8.2.47.

Solution: Let c be the commons spring stiffness. The stiffness matrix K is tridiagonal with all
diagonal entries equal to 2c and all sub- and super-diagonal entries equal to −c. Thus, by Ex-

ercise 8.2.47, the vibrational frequencies are

vuut2c

 
1 − cos

kπ

n + 1

!
= 2

√
c sin

kπ

2(n + 1)
for

k = 1, . . . , n. As n → ∞, the frequencies form a denser and denser set of points on the graph of
2
√

c sin θ for 0 ≤ θ ≤ 1
2 π.

♣ 9.5.12. Suppose you are given n different springs. In which order should you connect them to
unit masses so that the mass-spring chain vibrates the fastest? Does your answer depend
upon the relative sizes of the spring constants? Does it depend upon whether the bottom
mass is attached to a support or left hanging free? First try the case of three springs with
spring stiffnesses c1 = 1, c2 = 2, c3 = 3. Then try varying the stiffnesses. Finally, predict
what will happen with 4 or 5 springs, and see if you can make a conjecture in the general
case.

Solution: We take “fastest” to mean that the slowest vibrational frequency is as large as possi-
ble. Keep in mind that, for a chain between two fixed supports, completely reversing the order
of the springs does not change the frequencies. For the indicated springs connecting 2 masses to
fixed supports, the order 2, 1, 3 or its reverse, 3, 1, 2 is the fastest, with frequencies 2.14896, 1.54336.
For the order 1, 2, 3, the frequencies are 2.49721, 1.32813, while for 1, 3, 2 the lowest frequency is
the slowest, at 2.74616, 1.20773. Note that as the lower frequency slows down, the higher one
speeds up. In all cases, having the weakest spring in the middle leads to the fastest overall vi-
brations.

When the bottom mass is unattached, for the fastes vibration, as measured by the minimal
vibrational frequency, the springs should be connected in order, from stiffest to weakest, with
the strongest attached to the support. For fixed supports, it appears that if c1 > c2 > · · · > cn,
it appears that the fastest order is cn, cn−3, cn−5, . . . , c3, c1, c2, c4, . . . , cn−1 if n is odd and
cn, cn−1, cn−4, cn−6, . . . , c4, c2, c1, c3, . . . , cn−5, cn−3, cn−2 if n is even. A challenge is to find
proofs in either case.

♣ 9.5.13. Suppose the illustrated planar structure has unit masses at the
nodes and the bars are all of unit stiffness. (a) Write down the sys-
tem of differential equations that describes the dynamical vibrations
of the structure. (b) How many independent modes of vibration are
there? (c) Find numerical values for the vibrational frequencies. (d) Describe
what happens when the structure vibrates in each of the normal modes.
(e) Suppose the left-hand mass is displaced a unit horizontal distance.
Determine the subsequent motion.

Solution: (a)
d2u

dt2
+

0
BBBBBBB@

3
2 − 1

2 −1 0

− 1
2

3
2 0 0

− 1 0 3
2

1
2

0 0 1
2

3
2

1
CCCCCCCA
u = 0, where u(t) =

0
BBB@

u1(t)
v1(t)
u2(t)
v2(t)

1
CCCA are the horizontal

and vertical dispalcements of the two free nodes. (b) 4; (c) ω1 =

r
1 − 1

2

√
2 = .541196, ω2 =
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r
2 − 1

2

√
2 = 1.13705, ω3 =

r
1 + 1

2

√
2 = 1.30656, ω4 =

r
2 + 1

2

√
2 = 1.64533; (d) the corre-

sponding eigenvectors are v1 =

0
BBB@

−1 −
√

2
−1

−1 −
√

2
1

1
CCCA =

0
BBB@

−2.4142
−1

−2.4142
1

1
CCCA, v2 =

0
BBB@

−1 +
√

2
1

1 −
√

2
1

1
CCCA =

0
BBB@

.4142
1

−.4142
1

1
CCCA,

v3 =

0
BBB@

−1 +
√

2
−1

−1 +
√

2
1

1
CCCA =

0
BBB@

.4142
−1

.4142
1

1
CCCA, v4 =

0
BBB@

−1 −
√

2
1

1 +
√

2
1

1
CCCA =

0
BBB@

−2.4142
1

2.4142
1

1
CCCA. In the first mode, the vi-

brate in opposing directions vertically and proportionately 2.4 times as far in tandem horizontally;
in the second mode, the move in opposite directions horizontally and proportionately 2.4 times as
far in tandem vertically; ; in the third mode, the move in tandem horizontally and proportionately
2.4 times as far in opposite directions vertically; in the fourth mode, they move in tandem vertically,
and proportionately 2.4 times as far in opposing directions horizontally. (e)

u(t) =
1

4
√

2

“
− cos(ω1 t)v1 + cos(ω2 t)v2 + cos(ω3 t)v3 − cos(ω4 t)v4

”
,

which is a quasiperiodic combination of all four normal modes.

9.5.14. When does a real first order linear system
¦

u = Au have a quasi-periodic solution?
What is the smallest dimension in which this can occur?

Solution: The system has periodic solutions whenever A has a complex conjugate pair of puerly
imaginary eigenvalues. Thus, a quasi-periodic solution requires two such pairs, ± i ω1 and ± i ω2,
with the ratio ω1/ω2 an irrational number. The smallest dimension where this can occur is 4.

9.5.15. Find the general solution to the following systems. Distinguish between the vibrational
and unstable modes. What constraints on the initial conditions ensure that the unstable

modes are not excited? (a)
d2u

dt2
= −4u − 2v,

d2v

dt2
= −2u − v. (b)

d2u

dt2
= −u − 3v,

d2v

dt2
= −3u − 9v. (c)

d2u

dt2
= −2u + v − 2w,

d2v

dt2
= u − v,

d2w

dt2
= −2u − 4w.

(d)
d2u

dt2
= −u + v − 2w,

d2v

dt2
= u − v + 2w,

d2w

dt2
= −2u + 2v − 4w.

Solution:
(a) u(t) = at + b + 2r cos(

√
5 t − δ), v(t) = −2at − 2b + r cos(

√
5 t − δ).

The unstable mode consists of the terms with a in them; it will not be excited if the
initial conditions satisfy

¦

u(t0) − 2
¦

v(t0) = 0.

(b) u(t) = −3at − 3b + r cos(
√

10 t − δ), v(t) = at + b + 3r cos(
√

10 t − δ).
The unstable mode consists of the terms with a in them; it will not be excited if the
initial conditions satisfy −3

¦

u(t0) +
¦

v(t0) = 0.
(c)

u(t) = −2at − 2b − 1−
√

13
4 r1 cos

 r
7+

√
13

2 t − δ1

!
− 1+

√
13

4 r2 cos

 r
7−

√
13

2 t − δ2

!
,

v(t) = −2at − 2b + 3−
√

13
4 r1 cos

 r
7+

√
13

2 t − δ1

!
+ 3+

√
13

4 r2 cos

 r
7−

√
13

2 t − δ2

!
,

w(t) = at + b + r1 cos

 r
7+

√
13

2 t − δ1

!
+ r2 cos

 r
7−

√
13

2 t − δ2

!
.

The unstable mode consists of the terms with a in them; it will not be excited if the
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initial conditions satisfy −2
¦

u(t0) − 2
¦

v(t0) +
¦

w(t0) = 0.
(d)

u(t) = (a1 − 2a2) t + b1 − 2b2 + r cos(
√

6 t − δ),

v(t) = a1t + b1 − r cos(
√

6 t − δ),

w(t) = a2t + b2 + 2r cos(
√

6 t − δ).

The unstable modes consists of the terms with a1 and a2 in them; they will not be ex-
cited if the initial conditions satisfy

¦

u(t0) +
¦

v(t0) = 0 and −2
¦

u(t0) +
¦

w(t0) = 0.

9.5.16. Let K =

0
B@

3 0 −1
0 2 0

−1 0 3

1
CA. (a) Find an orthogonal matrix Q and a diagonal matrix Λ

such that K = Q Λ QT . (b) Is K positive definite? (c) Solve the second order system

d2u

dt2
= Au subject to the initial conditions u(0) =

0
B@

1
0
1

1
CA,

du

dt
(0) =

0
B@

0
1
0

1
CA. (d) Is your

solution periodic? If your answer is “yes”, indicate the period. (e) Is the general solution
to the system periodic?

Solution: (a) Q =

0
BBBB@

− 1√
2

1√
2

0

0 0 1
1√
2

1√
2

0

1
CCCCA

, Λ =

0
B@

4 0 0
0 2 0
0 0 2

1
CA; (b) yes, because K is symmetric and

has all positive eigenvalues; (c) u(t) =

 
cos

√
2 t,

1√
2

sin
√

2 t, cos
√

2 t

!T

; (d) the solution

u(t) is periodic with period
√

2 π; (e) no — since the frequencies 2,
√

2 are not rational mutli-
ples of each other, the general solution is quasi-periodic.

9.5.17. Answer Exercise 9.5.16 when A =

0
B@

2 −1 0
−1 1 −1

0 −1 2

1
CA.

Solution:

(a) Q =

0
BBBBBB@

1√
3

− 1√
2

1√
6

− 1√
3

0 2√
6

1√
3

1√
2

1√
6

1
CCCCCCA

, Λ =

0
B@

3 0 0
0 2 0
0 0 0

1
CA;

(b) no — K is only positive semi-definite;

(c) u(t) =

0
BBBBBB@

1
3 (t + 1) + 2

3 cos
√

3 t − 1
3
√

3
sin

√
3 t

2
3 (t + 1) − 2

3 cos
√

3 t + 1
3
√

3
sin

√
3 t

1
3 (t + 1) + 2

3 cos
√

3 t − 1
3
√

3
sin

√
3 t

1
CCCCCCA

;

(d) the solution u(t) is unstable, and becomes unbounded as | t | → ∞;
(e) no — the general solution is also unbounded.

9.5.18. Compare the solutions to the mass-spring system (9.59) with tiny spring constant k = ε ¿ 1
to those of the completely unrestrained system (9.71). Are they close? Discuss.

Solution: The solution to the initial value problem m
d2u

dt2
+ ε u = 0, u(t0) = a,

¦

u(t0) = b, is
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uε(t) = a cos

s
ε

m
(t − t0) + b

s
m

ε
sin

s
ε

m
(t − t0). In the limit as ε → 0, using the fact that

lim
h→ 0

sin c h

h
= c, we find uε(t) −→ a + b(t − t0), which is the solution to the unrestrained initial

value problem m
¦¦

u = 0, u(t0) = a,
¦

u(t0) = b. Thus, as the spring stiffness goes to zero, the
motion converges to the unrestrained motion. However, since the former solution is periodic,
while the latter moves along a straight line, the convergence is noo-uniform on all of R and the
solutions are close only for a period of time: if you wait long enough they will diverge.

♠ 9.5.19. Find the vibrational frequencies and instabilities of the following structures, assuming
they have unit masses at all the nodes. Explain in detail how each normal mode moves the
structure: (a) the three bar planar structure in Figure 6.13, (b) its reinforced version in
Figure 6.16, (c) the swing set in Figure 6.18.

Solution:

(a) Frequencies: ω1 =

r
3
2 − 1

2

√
5 = .61803, ω2 = 1, ω3 =

r
3
2 + 1

2

√
5 = 1.618034;

stable eigenvectors: v1 =

0
BBB@

−2 −
√

5
−1

−2 +
√

5
1

1
CCCA, v2 =

0
BBB@

−1
−1
−1

1

1
CCCA, v3 =

0
BBB@

2 +
√

5
1

−2 −
√

5
1

1
CCCA; unstable

eigenvector: v4 =

0
BBB@

1
−1

1
1

1
CCCA. In the lowest frequency mode, the nodes vibrate up and to-

wards each other and then down and away, the horizontal motion being less pronounced
than the vertical; in the next mode, the nodes vibrate up and away from each other and
then down and together, along directions bisecting the angle between the two bars; in
the highest frequency mode, they also vibrate up and away from each other and then
down and towards, with the horizontal motion significantly more than the vertical; in
the unstable mode the left node moves down and to the right, while the right hand node
moves at the same rate up and to the right.

(b) Frequencies: ω1 = .444569, ω2 = .758191, ω3 = 1.06792, ω4 = 1.757; eigenvectors:

v1 =

0
BBB@

.23727
−.11794
.498965
.825123

1
CCCA, v2 =

0
BBB@

−.122385
.973375

−.0286951
.191675

1
CCCA, v3 =

0
BBB@

.500054

.185046

.666846
−.520597

1
CCCA, v4 =

0
BBB@

.823815
.0662486
−.552745

.10683

1
CCCA.

In the lowest frequency mode, the left node vibrates down and to the right, while the
right hand node moves at the same rate up and to the right, then both reversing dired-
tions; in the second mode, the nodes vibrate up and towards each other, and then down
and away from each other, the horizontal motion being less pronounced than the verti-
cal; in the next mode, the nodes vibrate towards and then away from each other along
directions bisecting the angle between the two bars; in the highest frequency mode, they
also vibrate up and away from each other and then down and towards, with the horizon-
tal motion more than the vertical.

(c) Frequencies: ω1 =

r
2
11 = .426401, ω2 =

r
2
11 = .426401, ω3 =

r
21
11 − 3

11

√
5 = 1.13985,

ω4 =

r
20
11 = 1.3484, ω5 =

r
21
11 + 3

11

√
5 = 1.58711; stable eigenvectors:

v1 =

0
BBBBBBB@

0
1
0
0
0
0

1
CCCCCCCA

, v2 =

0
BBBBBBB@

0
0
0
0
1
0

1
CCCCCCCA

, v3 =

0
BBBBBBBB@

1
2 −

√
5

2
0
1

− 1
2 +

√
5

2
0
1

1
CCCCCCCCA

, v4 =

0
BBBBBBBB@

− 1
3
0

−1
− 1

3
0
1

1
CCCCCCCCA

, v5 =

0
BBBBBBBB@

1
2 +

√
5

2
0
1

− 1
2 −

√
5

2
0
1

1
CCCCCCCCA

;
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unstable eigenvector: v6 =

0
BBBBBBB@

3
0

−1
3
0
1

1
CCCCCCCA

. In the two lowest frequency modes, the individ-

ual nodes vibrate horizontally and transverse to the swing; in the next lowest mode, the
nodes vibrate together up and away from each other, and then down and towards each
other; in the next mode, the nodes vibrate up and down in opposing motion, and to-
wards and then away from each other; in the highest frequency mode, they also vibrate
vibrate up and down in opposing motion, but in the same direction along the swing; in
the unstable mode the left node moves down and in the direction of the bar, while the
right hand node moves at the same rate up and in the same horizontal direction.

♥ 9.5.20. Discuss the three-dimensional motions of the triatomic molecule of Example 9.37. Are
the vibrational frequencies the same as the one-dimensional model?

Solution: If the mass/spring molecule is allowed to move in space, then the vibrational modes
and frequencies remain the same, while there are 14 independent solutions corresponding to the
7 modes of instability: 3 rigid translations, 3 (linearized) rotations, and 1 mechanism, which is
the same as in the one-dimensional version. Thus, the general motion of the molecule in space
is to vibrate quasi-periodically at frequencies

√
3 and 1, while simultaneously translating, rigidly

rotating, and bending, all at a constant speed. (Of course, these are still just linear approxi-
mations to the full nonlinear motions, aand also do not take into account interatomic repulsive
forces that prevent the two end atoms from getting too close to each other.)

♠ 9.5.21. Assuming unit masses at the nodes, find the vibrational frequencies and and describe
the normal modes for the following planar structures. What initial conditions will not ex-
cite its instabilities (rigid motions and/or mechanisms)? (a) An equilateral triangle; (b) a
square; (c) a regular hexagon.

Solution:
(a) There are 3 linearly independent normal modes of vibration: one of frequency

√
3, , in

which the triangle expands and contacts, and two of frequency
q

3
2 , , in which one of

the edges expands and contracts while the opposite vertex moves out in the perpendic-
ular direction while the edge is contracting, and in when it expands. (Although there
are three such modes, the third is a linear combination of the other two.) There are
3 unstable null eigenmodes, corresponding to the planar rigid motions of the triangle.
To avoid exciting the instabilities, the initial velocity must be orthogonal to the ker-
nel; thus, if vi is the initial velocity of the ith mode, we require v1 + v2 + v3 = 0 and

v⊥1 + v⊥2 + v⊥3 = 0 where v⊥i denotes the angular component of thhe velocity vector with
respect to the center of the triangle.

(b) There are 4 normal modes of vibration, all of frequency
√

2, in which one of the edges
expands and contracts while the two vertices not on the edge stay fixed. There are 4
unstable modes: 3 rigid motions and one mechanism where two opposite corners move
towards each other while the other two move away from each other. To avoid exciting
the instabilities, the initial velocity must be orthogonal to the kernel; thus, if the ver-

tices are at (±1,±1 )T and vi = ( vi, wi )T is the initial velocity of the ith mode, we
require v1 + v2 = v3 + v4 = w1 + w4 = w2 + w3 = 0.

(c) There are 6 normal modes of vibration: one of frequency
√

3, in which three nonadja-
cent edges expand and then contact, while the other three edges simultaneously contract

and then expand; two of frequency
q

5
2 , in which two opposite vertices move back and

forth in the perpendicular direction to the line joining them (onoly two of these three

modes are linearly independent); two of frequency
q

3
2 , in which two opposite vertices
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move back and forth towards each other (again, only two of these three modes are lin-
early independent); and one of frequency 1, in which the entire hexagon expands and
contacts. There are 6 unstable modes: 3 rigid motions and 3 mechanisms where two
opposite vertice move towards each other while the other four move away. As usual,
to avoid exciting the instabilities, the initial velocity must be orthogonal to the kernel;

thus, if the vertices are at
“

cos 1
3 kπ, sin 1

3 kπ
”T

, and vi = ( vi, wi )T is the initial veloc-

ity of the ith mode, we require

v1 + v2 + v3 + v4 + v5 + v6 = 0,

w1 + w2 + w3 + w4 + w5 + w6 = 0,
√

3 v5 + w5 +
√

3 v6 + w6 = 0,

−
√

3 v1 + w1 + 2w2 = 0,
√

3 v1 + w1 + 2w6 = 0,

2w3 +
√

3 v4 + w4 = 0.

♠ 9.5.22. Answer Exercise 9.5.21 for the three-dimensional motions of a regular tetrahedron.

Solution: There are 6 linearly independent normal modes of vibration: one of frequency 2, in
which the tetrahedron expands and contacts; four of frequency

√
2, in which one of the edges

expands and contracts while the opposite vertex stays fixed; and two of frequency
√

2, in which
two opposite edges move towards and away from each other. (There are three different pairs,
but the third mode is a linear combination of the other two.) There are 6 unstable null eigen-
modes, corresponding to the three-dimensional rigid motions of the tetrahedron.

To avoid exciting the instabilities, the initial velocity must be orthogonal to the kernel, and

so, using the result of Exercise 6.3.13, if vi = ( ui, vi, wi )T is the initial velocity of the ith mode,
we require

u1 + u2 + u3 + u4 = 0,

v1 + v2 + v3 + v4 = 0,

w1 + w2 + w3 + w4 = 0,

−
√

2 u1 +
√

6 v1 − w1 − 2
√

2 u2 + w2 = 0,

−2v1 +
√

3 u2 + v2 −
√

3 u3 + v3 = 0,

−
√

2 u1 −
√

6 v1 − w1 − 2
√

2 u3 + w3 = 0.

♥ 9.5.23. (a) Show that if a structure contains all unit masses and bars with unit stiffness, ci =
1, then its frequencies of vibration are the nonzero singular values of the reduced incidence
matrix. (b) How would you recognize when a structure is close to being unstable?

Solution: (a) When C = I , then K = AT A and so the frequencies ωi =
q

λi are the square

roots of its positive eigenvalues, which, by definition, are the singular values of the reduced inci-
dence matrix. (b) Thus, a stucture with one or more very small frequencies ωi ¿ 1, and hence
one or more very slow vibrational modes, is almost unstable in that a small perturbation can
create a null eigenvalue corresponding to a low frquency mode.

9.5.24. Prove that if the initial velocity satisfies
¦

u(t0) = b ∈ corng A, then the solution to the
initial value problem (9.63, 69) remains bounded.

Solution: Since corng A is the orthogonal complement to ker A = ker K, the initial velocity is or-
thogonal to all modes of instability, and hence by Theorem 9.38, the solution remains bounded,
vibrating around the fixed point prescribed by the initial position.

9.5.25. Find the general solution to the system (9.75) for the following matrix pairs:

(a) M =

 
2 0
0 3

!
, K =

 
3 −1

−1 2

!
, (b) M =

 
3 0
0 5

!
, K =

 
4 −2

−2 3

!
,

(c) M =

 
2 0
0 1

!
, K =

 
2 −1

−1 2

!
, (d) M =

0
B@

2 0 0
0 3 0
0 0 6

1
CA , K =

0
B@

5 −1 −1
−1 6 3
−1 3 9

1
CA ,
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(e) M =

 
2 1
1 2

!
, K =

 
3 −1

−1 3

!
, (f ) M =

0
B@

1 1 0
1 3 1
0 1 1

1
CA , K =

0
B@

1 2 0
2 8 2
0 2 1

1
CA .

Solution:

(a) u(t) = r1 cos
„

1√
2

t − δ1

« 
1
2

!
+ r2 cos

„q
5
3 t − δ2

« −3
1

!
;

(b) u(t) = r1 cos
„

1√
3

t − δ1

« 
2
3

!
+ r2 cos

„q
8
5 t − δ2

« −5
2

!
;

(c) u(t) = r1 cos

 r
3−

√
3

2 t − δ1

!0
@

1+
√

3
2

1

1
A+ r2 cos

 r
3+

√
3

2 t − δ2

!0
@

1−
√

3
2

1

1
A;

(d) u(t) = r1 cos ( t − δ1 )

0
B@

0
−1

1

1
CA+ r2 cos

“√
2 t − δ2

”
0
B@

3
2
1

1
CA+ r3 cos

“√
3 t − δ3

”
0
B@
−3

2
1

1
CA;

(e) u(t) = r1 cos
„q

2
3 t − δ1

« 
1
1

!
+ r2 cos ( 2 t − δ2 )

 
−1

1

!
;

(f ) u(t) = (at + b)

0
B@

2
−1

1

1
CA+ r1 cos ( t − δ1 )

0
B@
−1

0
1

1
CA+ r2 cos

“√
3 t − δ2

”
0
B@

1
−2

1

1
CA.

9.5.26. A mass-spring chain consisting of two masses, m1 = 1 and m2 = 2 connected to top
and bottom supports by identical springs with unit stiffness. The upper mass is displaced
by a unit distance. Find the subsequent motion of the system.

Solution:

u1(t) =
√

3−1
2
√

3
cos

r
3−

√
3

2 t +
√

3+1
2
√

3
cos

r
3+

√
3

2 t, u2(t) = 1
2
√

3
cos

r
3−

√
3

2 t − 1
2
√

3
cos

r
3+

√
3

2 t.

9.5.27. Answer Exercise 9.5.26 when the bottom support is removed.

Solution:

u1(t) =
√

17−3
2
√

17
cos

√
5−

√
17

2 t +
√

17+3
2
√

17
cos

√
5+

√
17

2 t,

u2(t) = 1√
17

cos

√
5−

√
17

2 t − 1√
17

cos

√
5+

√
17

2 t.

♠ 9.5.28. Suppose you have masses m1 = 1, m2 = 2, m3 = 3 connected to top and bottom
supports by identical unit springs. Does rearranging the order of the masses change the
fundamental frequencies? If so, which order produces the fastest vibrations?

♣ 9.5.29. (a) A water molecule consists of two hydrogen atoms connected at an angle of 105◦ to
an oxygen atom whose relative mass is 16 times that of the hydrogen atoms. If the bonds
are modeled as linear unit springs, determine the fundamental frequencies and modes of
vibrations. (b) Do the same for a carbon tetrachloride molecule, in which the chlorine
atoms, with atomic weight 35, are positioned on the vertices of a regular tetrahedron and
the carbon atom, with atomic weight 12, is at the center. (c) Finally try a benzene molecule,
consisting of 6 carbon atoms arranged in a regular hexagon. In this case, every other bond
is double strength because two electrons are shared. (Ignore the six extra hydrogen atoms
for simplicity.)

♣ 9.5.30. So far, our mass-spring chain has only been allowed to move in the vertical direction.
(a) Set up the system governing the planar motions of a mass–spring chain consisting two
masses attached to top and bottom supports where the masses are allowed to move in the
longitudinal and transverse directions. Compare the resulting vibrational frequencies with
the 1-dimensional case. (b) Repeat the analysis when the bottom support is removed.
(c) Can you make any conjectures concerning the planar motions of general mass-spring
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chains?

♣ 9.5.31. Repeat Exercise 9.5.30 for fully 3-dimensional motions of the chain.

♦ 9.5.32. Suppose M is a nonsingular matrix. Prove that λ is a generalized eigenvalue of the
matrix pair K, M if and only if it is an ordinary eigenvalue of the matrix P = M−1K. How
are the eigenvectors related? How are the characteristic equations related?

Solution: Kv = λM v if and only if M−1Kv = λv, and so the eigenvectors are the same. The
characteristic equations are the same up to a multiple, since

det(K − λ M) = det
h
M(M−1K − λ I )

i
= det M det(P − λ I ).

9.5.33. Suppose that u(t) is a solution to (9.75). Let N =
√

M denote the positive defi-
nite square root of the mass matrix M , as defined in Exercise 8.4.26. (a) Prove that the

“weighted” displacement vector eu(t) = N u(t) solves d2eu/dt2 = −fK eu, where fK =

N−1K N−1 is a symmetric, positive semi-definite matrix. (b) Explain in what sense this
can serve as an alternative to the generalized eigenvector solution method.

Solution:
(a) First,

d2eu
dt2

= N
d2u

dt2
= −N K u = −N K N−1

u = −fK eu.

Moreover, fK is symmetric since fKT = N−T KT N−T = N−1KN−1 since both N and K
are symmetric. Positive definiteness follows since

exT fK ex = exT N−1K N−1 ex = x
T K x > 0 for all ex = N x 6= 0.

(b) Each eigenvalue eλ = eω2 and corresponding eigenvector ev of fK produces two solutions
eu(t) =

n
cos
sin

o
eω t ev to the modified system d2eu/dt2 = −fK eu. The corresponding so-

lutions to the original system are u(t) = N−1eu(t) =
n

cos
sin

o
ω tv, where ω = eω and

v = N−1ev. Finally, we observe that v is the generalized eigenvector for the gener-
alized eigenvalue λ = ω2 = eλ of the matrix pair K, M . Indeed, fK ev = eλ ev implies
Kv = N K N N−1v = eλv.

♦ 9.5.34. Provide the details of the proof of Theorem 9.38.

Solution:

9.5.35. Solve the following mass-spring initial value problems, and classify as to
(i) overdamped, (ii) critically damped, (iii) underdamped, or (iv) undamped:

(a)
¦¦

u + 6
¦

u + 9u = 0, u(0) = 0,
¦

u(0) = 1. (b)
¦¦

u + 2
¦

u + 10u = 0, u(0) = 1,
¦

u(0) = 1.
(c)

¦¦

u + 16u = 0, u(1) = 0,
¦

u(1) = 1. (d)
¦¦

u + 3
¦

u + 9u = 0, u(0) = 0,
¦

u(0) = 1.
(e) 2

¦¦

u + 3
¦

u + u = 0, u(0) = 2,
¦

u(0) = 0. (f )
¦¦

u + 6
¦

u + 10u = 0, u(0) = 3,
¦

u(0) = −2.

Solution:
(a) u(t) = te−3 t. Critically damped.

(b) u(t) = e− t
“

cos 3 t + 2
3 sin 3 t

”
. Underdamped.

(c) u(t) = 1
4 sin 4(t − 1). Undamped.

(d) u(t) = 2
√

3
9 e−3 t/2 sin 3

√
3

2 t. Underdamped.

(e) u(t) = 4e− t/2 − 2e− t. Overdamped.

(f ) u(t) = e−3 t(3 cos t + 7 sin t). Underdamped.
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9.5.36. Consider the overdamped mass-spring equation
¦¦

u + 6
¦

u + 5u = 0. (a) If the mass starts
out a distance 1 away from equilibrium, how large must the initial velocity be in order that
it pass through equilibrium once?

Solution: The solution is u(t) = 1
4 (v + 5)e− t − 1

4 (v + 1)e−5 t where v =
¦

u(0) is the initial

velocity. This vanishes when e4 t =
v + 1

v + 5
, which happens when t > 0 provided

v + 1

v + 5
> 1, and

so the initial velocity must satisfy v < −5.

9.5.37. (a) A mass weighing 16 pounds stretches a spring 6.4 feet. Assuming no friction, deter-
mine the equation of motion and the natural frequency of vibration of the mass-spring sys-
tem. Use the value g = 32 ft/sec2 for the gravitational acceleration. (b) The mass-spring
system is placed in a jar of oil, whose frictional resistance equals the speed of the mass. As-
sume the spring is stretched an additional 2 feet from its equilibrium position and let go.
Determine the motion of the mass. (c) Is the system over-damped or under-damped? Are
the vibrations more rapid or less rapid than the undamped system?

Solution:
(a) By Hooke’s Law, the spring stiffness is k = 16/6.4 = 2.5. The mass is 16/32 = .5. The

equations of motion are .5
¦¦

u + 2.5u = 0. The natural frequency is ω =
√

5 = 2.23607.
(b) The solution to the initial value problem .5

¦¦

u +
¦

u + 2.5u = 0u(0) = 2,
¦

u(0) = 0, is

u(t) = e− t(2 cos 2 t + sin 2 t).
(c) The system is underdamped, and the vibrations are less rapid than the undamped system.

9.5.38. Suppose you convert the second order equation (9.80) into its phase plane equiva-
lent. What are the phase portraits corresponding to (a) undamped, (b) underdamped,
(c) critically damped, and (d) overdamped motion?

Solution: The undamped case corresponds to a center, the underdamped case to a stable fo-
cus, the critically damped case to a stable improper node, and the overdamped case to a stable
node.

♦ 9.5.39. (a) Prove that, for any non-constant solution to an overdamped mass-spring system,
there is at most one time where u(t?) = 0. (b) Is this statement also valid in the critically
damped case?

Solution:
(a) The general solution has the form u(t) = c1 e−at + c2 e−bt for some 0 < a < b. If

c1 = 0, c2 6= 0, the solution does not vanish. Otherwise, u(t) = 0 if and only if e(b−a) t =

−c2/c1, which, since e(b−a) t is monotonic, happens for at most one t.

(b) Yes, since the solution is u(t) = (c1 + c2 t)e−at for some a > 0, which, for c2 6= 0, only
vanishes when t = −c1/c2.

9.5.40. Discuss the possible behaviors of a mass moving in a frictional medium that is not at-
tached to a spring, i.e., set k = 0 in (9.80).

Solution: The general solution to m
d2u

dt2
+ β

du

dt
= 0 is u(t) = c1 + c2 e−β t/m. Thus, the mass

approaches its equilibrium position, which can be anywhere, at an exponentially fast rate.

9.6. Forcing and Resonance.resonance
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9.6.1. Graph the following functions. Describe the fast oscillation and beat frequencies:
(a) cos 8 t − cos 9 t, (b) cos 26 t − cos 24 t, (c) cos 10 t + cos 9.5 t, (d) cos 5 t − sin 5.2 t.

Solution:
(a) cos 8 t − cos 9 t = 2 sin 1

2 t sin 17
2 t. Fast frequency: 17

2 , beat frequency: 1
2 ;

-5 5 10 15 20

-2

-1

1

2

(b) cos 26 t − cos 24 t = −2 sin t sin 25 t. Fast frequency: 25, beat frequency: 1;

-2 2 4 6 8 10

-2

-1

1

2

(c) cos 10 t + cos 9.5 t = 2 sin .25 t sin 9.75 t. Fast frequency: 9.75, beat frequency: .25;

5 10 15 20 25 30

-2

-1

1

2

(d) cos 5 t−sin 5.2 t = 2 sin
“

.1 t − 1
4 π

”
sin
“

5.1 t − 1
4 π

”
. Fast frequency: 5.1, beat frequency: .1;

10 20 30 40 50 60 70

-2

-1

1

2

♠ 9.6.2. Does a function of the form u(t) = a cos η t − b cos ω t still exhibit beats when η ≈ ω, but
a 6= b? Use a computer to graph some particular cases and discuss what you observe.

Solution: Yes, the same fast oscillations and beats can be observed graphically, even though
there is no elementary trigonometric identity that can give a simple explanation.

9.6.3. Solve the following initial value problems: (a)
¦¦

u + 36u = cos 3 t, u(0) = 0,
¦

u(0) = 0.
(b)

¦¦

u + 6
¦

u + 9u = cos t, u(0) = 0,
¦

u(0) = 1. (c)
¦¦

u +
¦

u + 4u = cos 2 t, u(0) = 1,
¦

u(0) = −1. (d)
¦¦

u + 9u = 3 sin 3 t, u(0) = 1,
¦

u(0) = −1. (e) 2
¦¦

u + 3
¦

u + u = cos 1
2 t,

u(0) = 3,
¦

u(0) = −2. (f ) 3
¦¦

u + 4
¦

u + u = cos t, u(0) = 0,
¦

u(0) = 0.

Solution:
(a) u(t) = 1

27 cos 3 t − 1
27 cos 6 t;

(b) u(t) = 35
50 te−3 t − 4

50 e−3 t + 4
50 cos t + 3

50 sin t;

(c) u(t) = 1
2 sin 2 t + e− t/2

“
cos

√
15
2 t −

√
15
5 sin

√
15
2 t

”
;

(d) u(t) = cos 3 t − 1
2 t cos 3 t − 1

6 sin 3 t;

(e) u(t) = 1
5 cos 1

2 t + 3
5 sin 1

2 t + 9
5 e− t + e− t/2;

(f ) u(t) = − 1
10 cos t + 1

5 sin t + 1
4 e− t − 3

20 e− t/3.

9.6.4. Solve the following initial value problems. In each case, graph the solution and explain
what type of motion is represented. (a)

¦¦

u + 25u = 3 cos 4 t, u(0) = 1,
¦

u(0) = 1,
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(b)
¦¦

u + 4
¦

u + 40u = 125 cos 5 t, u(0) = 0,
¦

u(0) = 0, (c)
¦¦

u + 6
¦

u + 5u = 25 sin 5 t, u(0) = 4,
¦

u(0) = 2, (d)
¦¦

u + 16u = sin 4 t, u(0) = 0,
¦

u(0) = 0.

Solution:
(a) u(t) = 1

3 cos 4 t + 2
3 cos 5 t + 1

5 sin 5 t; undamped quasi-periodic motion with fast frequency
4.5 and beat frequency .5:

5 10 15 20 25 30

-1

-0.5

0.5

1

(b) u(t) = 3 cos 5 t + 4 sin 5 t − e−2 t
“

3 cos 6 t + 13
3 sin 6 t

”
; the transient is an underdamped

motion; the persistent motion is periodic of frequency 5 and amplitude 5:

2 4 6 8 10

-4

-2

2

4

(c) u(t) = − 60
29 cos 2 t + 5

29 sin 2 t − 56
29 e−5 t + 8e− t; the transient is an overdamped motion;

the persistent motion is periodic:

5 10 15 20 25

-2
-1

1
2
3
4

(d) u(t) = 1
32 sin 4 t − 1

8 t cos 4 t; resonant, unbounded motion:

5 10 15 20 25

-3
-2
-1

1
2
3

9.6.5. A mass m = 25 is attached to a unit spring with k = 1, and frictional coefficient
β = .01. The spring will break when it moves more than 1 unit. Ignoring the effect of the
transient, what is the maximum allowable amplitude α of periodic forcing at frequency η =
(a) .19 ? (b) .2 ? (c) .21 ?

Solution: In general, by (9.100), the maximal allowable amplitude is α =
q

m2(ω2 − η2)2 + β2 η2 =q
625η4 − 49.9999 η2 + 1, which, in the particular cases is (a) 0.0975, (b) 0.002, (c) 0.1025.

9.6.6. For what range of frequencies η can you force the mass in Exercise 9.6.5 with amplitude
α = .5 without breaking the spring?

Solution: η ≤ 0.14142 or η ≥ 0.24495.

9.6.7. How large should the friction in Exercise 9.6.5 be so that you can safely force the mass
with amplitude α = .5 at any frequency?

Solution: β ≥ 5
q

2 −
√

3 = 2.58819.

9.6.8. Suppose the mass-spring-oil system of Exercise 9.5.37(b) is subject to a periodic exter-
nal force 2 cos 2 t. Discuss, in as much detail as you can, the long term motion of the mass.

Solution: The solution to .5
¦¦

u +
¦

u + 2.5u = 2 cos 2 t, u(0) = 2,
¦

u(0) = 0, is

u(t) = 4
17 cos 2 t + 16

17 sin 2 t + e− t
“

30
17 cos 2 t − 1

17 sin 2 t
”

= .9701 cos(2 t − 1.3258) + 1.7657e− t cos(2 t + .0333).

The solution consists of a persistent periodic vibration at the forcing frequency of 2, with a
phase lag of tan−1 4 = 1.32582 and amplitude 4/

√
17 = .97014, combined with a transient
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vibration at the same frequency with exponentially decreasing amplitude.

♦ 9.6.9. Show that the conclusions based on (9.96) do not depend upon the choice of initial con-
ditions (9.95).

Solution:

♦ 9.6.10. Write down the solution u(t, η) to the initial value problem

m
d2u

dt2
+ k u = α cos η t, u(0) =

¦

u(0) = 0,

for (a) a non-resonant forcing function at frequency η 6= ω; (b) a resonant forcing function
at frequency η = ω. (c) Show that, as η → ω, the limit of the non-resonant solution equals
the resonant solution. Conclude that the solution u(t, η) depends continuously on the fre-
quency η even though its mathematical formula changes significantly at resonance.

Solution: (a) u(t) =
α(cos η t − cos ω t)

m(ω2 − η2)
; (b) u(t) =

αt

2mω
sin ω t ;

(c) Use l’Hôpital’s rule, differentiating with respect to η to compute

lim
η →ω

α(cos η t − cos ω t)

m(ω2 − η2)
= lim

η →ω

α t sin η t

2mη
=

αt

2mω
sin ω t.

♦ 9.6.11. Justify the solution formulae (9.100) and (9.101).

Solution: Using the method of undetermined coefficients, we set

u?(t) = A cos η t + B sin η t.

Substituting into the differential equation (9.99), and then equating coefficients of cos η t, sin η t,
we find

m(ω2 − η2)A + β ηB = α, −β ηA + m(ω2 − η2)B = 0,

where we replaced k = mω2. Thus,

A =
αm(ω2 − η2)

m2(ω2 − η2)2 + β2 η2
, B =

αβη

m2(ω2 − η2)2 + β2 η2
.

We then put the resulting solution in phase-amplitude form

u?(t) = a cos(η t − ε),

where, according to (2.7), A = a cos ε, B = a sin ε, which implies (9.100–101).

9.6.12. Classify the following RLC circuits as (i) underdamped, (ii) critically damped, or
(iii) overdamped: (a) R = 1, L = 2, C = 4, (b) R = 4, L = 3, C = 1,
(c) R = 2, L = 3, C = 3, (d) R = 4, L = 10, C = 2, (e) R = 1, L = 1, C = 3.

Solution:
(a) underdamped, (b) overdamped, (c) critically damped, (d) underdamped, (e) underdamped.

9.6.13. Find the current in each of the unforced RLC circuits in Exercise 9.6.12 induced by
the initial data u(0) = 1,

¦

u(0) = 0.

Solution:
(a) u(t) = e− t/4 cos 1

4 t + e− t/4 sin 1
4 t,

(b) u(t) = 3
2 e− t/3 − 1

2 e− t,

(c) u(t) = e− t/3 + 1
3 te− t/3,

(d) u(t) = e− t/5 cos 1
10 t + 2e− t/5 sin 1

10 t,
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(e) u(t) = e− t/2 cos 1
2
√

3
t +

√
3 e− t/2 sin 1

2
√

3
t.

9.6.14. A circuit with R = 1, L = 2, C = 4 includes an alternating current source F (t) =
25 cos 2 t. Find the solution to the initial value problem u(0) = 1,

¦

u(0) = 0.

Solution:

u(t) = 165
41 e− t/4 cos 1

4 t − 91
41 e− t/4 sin 1

4 t − 124
41 cos 2 t + 32

41 sin 2 t

= 4.0244 e− .25 t cos .25 t − 2.2195 e− .25 t sin .25 t − 3.0244 cos 2 t + .7805 sin 2 t.

9.6.15. A superconducting LC circuit has no resistance: R = 0. Discuss what happens when
the circuit is wired to an alternating current source F (t) = α cos η t.

Solution: The natural vibrational frequency is ω = 1/
√

RC. If η 6= ω then the circuit experi-
ences a quasi-periodic vibration as a combination of the two frequencies. As η gets close to ω,
the current amplitude becomes larger an larger, exhibiting beats. When η = ω, the circuit is in
resonance, and the current amplitude grows without bound.

9.6.16. A circuit with R = .002, L = 12.5, and C = 50 can carry a maximum current of
250. Ignoring the effect of the transient, what is the maximum allowable amplitude α of an
applied periodic current F (t) = α cos η t at frequency η = (a) .04 ? (b) .05 ? (c) .1 ?

Solution: (a) .02, (b) 2.8126, (c) 26.25.

9.6.17. Given the circuit in Exercise 9.6.16, what range of frequencies η can you supply a unit
amplitude periodic current source?

Solution: η ≤ .03577 or η ≥ .04382.

9.6.18. How large should the resistance in the circuit in Exercise 9.6.16 be so that you can
safely apply any unit amplitude periodic current?

Solution: R ≥ .10051.

9.6.19. Find the general solution to the following forced second order systems:

(a)
d2u

dt2
+

 
7 −2

−2 4

!
u =

 
cos t

0

!
, (b)

d2u

dt2
+

 
5 −2

−2 3

!
u =

 
0

5 sin 3 t

!
,

(c)
d2u

dt2
+

 
13 −6
−6 8

!
u =

 
5 cos 2 t

cos 2 t

!
, (d)

 
2 0
0 3

!
d2u

dt2
+

 
3 −1

−1 2

!
u =

0
@ cos 1

2 t

− cos 1
2 t

1
A,

(e)

 
3 0
0 5

!
d2u

dt2
+

 
4 −2

−2 3

!
u =

 
cos t

11 sin 2 t

!
, (f )

d2u

dt2
+

0
B@

6 −4 1
−4 6 −1

1 −1 11

1
CAu =

0
B@

cos t
0

cos t

1
CA,

(g)

0
B@

2 0 0
0 3 0
0 0 6

1
CA

d2u

dt2
+

0
B@

5 −1 −1
−1 6 3
−1 3 9

1
CAu =

0
B@

0
cos t
cos t

1
CA.

Solution:

(a) u(t) = cos t

 3
14
1
7

!
+ r1 cos(2

√
2 t − δ1)

 
−2

1

!
+ r2 cos(

√
3 t − δ2)

 
1
2

!
.

(b) u(t) = sin 3 t

 
1
2

−1

!
+r1 cos(

q
4 +

√
5 t − δ1)

 
−1 −

√
5

2

!
+r2 cos(4 −

√
5 t − δ2)

 
−1 +

√
5

2

!
.

(c) u(t) =

 1
2 t sin 2 t + 1

3 cos 2 t
3
4 t sin 2 t

!
+ r1 cos

“√
17 t − δ1

”  −3
2

!
+ r2 cos(2 t − δ2)

 
2
3

!
,
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(d) u(t) = cos 1
2 t

0
B@

2
17

− 12
17

1
CA+ r1 cos(

√
5√
3

t − δ1)

0
B@
−3

1

1
CA+ r2 cos( 1√

2
t − δ2)

0
B@

1

2

1
CA.

(e) u(t) = cos t

0
B@

1
3

− 1
3

1
CA+ sin 2 t

0
B@

1
6

− 2
3

1
CA+ r1 cos(

√
8√
5

t − δ1)

0
B@
−5

2

1
CA+ r2 cos( 1√

3
t − δ2)

0
B@

2

3

1
CA.

(f ) u(t) = cos t

0
BBBB@

6
11
5
11
1
11

1
CCCCA

+r1 cos(
√

12 t − δ1)

0
BBBB@

1

−1

2

1
CCCCA

+r2 cos(3 t − δ2)

0
BBBB@

−1

1

1

1
CCCCA

+r3 cos(
√

2 t − δ3)

0
BBBB@

1

1

0

1
CCCCA

.

(g) u(t) = cos t

0
BBBB@

1
8
3
8

0

1
CCCCA

+r1 cos(
√

3 t − δ1)

0
BBBB@

−3

2

1

1
CCCCA

+r2 cos(
√

2 t − δ2)

0
BBBB@

3

2

1

1
CCCCA

+r3 cos(t − δ3)

0
BBBB@

0

−1

1

1
CCCCA

.

9.6.20. (a) Find the resonant frequencies of a mass-spring chain consisting of two masses, m1 =
1 and m2 = 2 connected to top and bottom supports by identical springs with unit stiff-
ness. (b) Write down an explicit forcing function that will excite the resonance.

Solution:

(a) The resonant frequencies are

r
3−

√
3

2 = .796225,

r
3+

√
3

2 = 1.53819.

(b) For example, a forcing function of the form cos

 r
3+

√
3

2 t

!
w where w =

 
w1
w2

!
is not

orthogonal to the eigenvector

 
−1 −

√
3

1

!
, so w2 6= (1 +

√
3 )w1, will excite resonance.

9.6.21. Suppose one of the supports is removed from the mass-spring chain of Exercise 9.6.20.
Does your forcing function still excite the resonance? Do the internal vibrations of the
masses (i) speed up, (ii) slow down, (iii) or remain the same? Does your answer depend
upon which of the two supports is removed?

Solution: When the bottom support is removed, the resonant frequencies are

√
5−

√
17

2 = .468213,√
5+

√
17

2 = 1.51022. When the top support is removed, the resonant frequencies are

r
2−

√
2

2 =

.541196,

r
2+

√
2

2 = 1.30656. In both cases the vibrations are slower. The previous forcing func-

tion will not excite resonance.

♣ 9.6.22. Find the resonant frequencies of the following structures, assuming the nodes all have
unit mass. Then find a means of forcing the structure at one of the resonant frequencies,
and yet not exciting the resonance. Can you also force the structure without exciting any
mechanism or rigid motion? (a) the square truss of Exercise 6.3.5; (b) the joined square
truss of Exercise 6.3.6; (c) the house of Exercise 6.3.9; (d) the space station in Exercise
6.3.12; (e) the triatomic molecule of Example 9.37; (f ) the water molecule of Exercise
9.5.29.

Solution: In each case, you need to force the system by cos(ωt)a where ω2 = λ is an eigenvalue
and a is orthogonal to the corresponding eigenvector. In order not to excite an instability, a
needs to also be orthogonal to the kernel of the stiffness matrix spanned by the unstable mode
vectors.

(a) Resonant frequencies: ω1 = .5412, ω2 = 1.1371, ω3 = 1.3066, ω4 = 1.6453. Eigenvectors:

ds 9/9/04 513 c© 2004 Peter J. Olver



v1 =

0
BBB@

− .6533
− .2706
− .6533

.2706

1
CCCA,v2 =

0
BBB@

− .2706
− .6533

.2706
− .6533

1
CCCA,v3 =

0
BBB@

− .2706
.6533

− .2706
− .6533

1
CCCA,v4 =

0
BBB@

− .6533
.2706
.6533
.2706

1
CCCA. No unstable

modes.
(b) Resonant frequencies: ω1 = .4209, ω2 = 1 (double), ω3 = 1.2783, ω4 = 1.6801, ω5 =

1.8347. Eigenvectors: v1 =

0
BBBBBBB@

− .6626
− .1426
− .6626

.1426
− .2852

0

1
CCCCCCCA

,v2 =

0
BBBBBBB@

0
− .6862

0
− .4425

.1218
− .5643

1
CCCCCCCA

, bv2 =

0
BBBBBBB@

0
− .4425

0
.6862
.5643
.1218

1
CCCCCCCA

,v3 =

0
BBBBBBB@

− .5
− .2887

.5
− .2887

0
.5774

1
CCCCCCCA

,v4 =

0
BBBBBBB@

.2470
− .3825

.2470

.3825
− .7651

0

1
CCCCCCCA

,v5 =

0
BBBBBBB@

.5
− .2887

− .5
− .2887

0
.5774

1
CCCCCCCA

. No unstable modes.

(c) Resonant frequencies: ω1 = .3542, ω2 = .9727, ω3 = 1.0279, ω4 = 1.6894, ω5 =

1.7372. Eigenvectors: v1 =

0
BBBBBBB@

− .0989
− .0706

0
− .9851

.0989
− .0706

1
CCCCCCCA

,v2 =

0
BBBBBBB@

− .1160
.6780
.2319

0
− .1160
− .6780

1
CCCCCCCA

,v3 =

0
BBBBBBB@

.1251
− .6940

0
.0744

− .1251
− .6940

1
CCCCCCCA

,v4 =

0
BBBBBBB@

.3914

.2009
− .7829

0
.3914

− .2009

1
CCCCCCCA

,v5 =

0
BBBBBBB@

.6889

.1158
0

− .1549
− .6889

.1158

1
CCCCCCCA

. Unstable mode: z = ( 1, 0, 1, 0, 1, 0 )T .

(d) Resonant frequencies: ω1 = 1, ω2 =
√

3 = 1.7372. Eigenvectors: v1 = ( 1, 0,−1 )T ,v2 =0
B@

1
−2

1

1
CA. Rigid motion: z = ( 1, 1, 1 )T .

(e) Resonant frequencies: ω1 = 1, ω2 =
√

3 = 1.7372. Eigenvectors: v1 = ( 1, 0,−1 )T ,v2 =0
B@

1
−2

1

1
CA. Unstable mode: z = ( 1, 1, 1 )T .
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