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Exercise 1: The Power Residue Symbol (Legendre, GHlS, B 4L

This exercise is based on Chapter VII, § 3, plus Kumme; t:;elog y ](dChapttc_r I,
§2). Let m be a fixed natural number and K a fixed glo ;1 c eco?]a\,mmg
the group p,, of mth roots of unity. Let S denf:tf: Fhe seto II;r:m s of K con-
sisting of the archimedean ones and those dividing m. If ay,..a ar
elements of K*, we let S(ay, ..., a,) denote the .set of prxmes*m s togc”:ir,
with the primes o such that |a;|, # 1 for some i. For ae K* and be /

the symbol (E) is defined by the equation

b
1
(Va)rux(b) s (E) ’_’{/a,
where L is the field K(3/a).

ExErcise 1.1. Show (g) is an mth root of 1, independent of the choicc
of "/a.

EXercise 1.2. Working in the field L’ = K(%/a, /a’) and using Chapter
VII, § 3.2 with K’ = Kand L = K(%/a), show

16

EXERcISE 1.3, Show

a G a a

b0’/ \p/ \p'
t These “exercises” refer primarily to Chapter VII,
prepared after the Conference by Tate with the co

some of the important results and interesting appli
Was not enough time in the Conference itself,

348

if b e [5@a),

if b e 5@,

“Global class field theory”, and were
nnivance of Serre, They adumbrate
cations for which unfortunately there

FXERClgpg

&) =1,

S ExercisE 1.4. (Generalizeq py,,
here No = [k(©)], and (g)

349

ifb = TNy
cn'rer:'an.) Ifog S(
15 the unique mtt, Toot of |

a Ne-1
v/ =9 ™ (modpy.

ExercisE 1.5. (Explanation of t

a) thep ml( Ny — 1),

Such thay

he name “Dower

§,¢ S(a) the following statements are equivalen: esidue symbol™)  For
k3

Ly a

-1 = 1.

g " ()

% (ii) The congruence ™ = g (moq Po) is solvable with x

~ (i) The equation X™ = a s solyable v o

S
AR

i

ithxe K,
~ (Use the fact that k(v)* is cyclic of orq
; Chaptcr II, App' C)

- EXercISE 1.6. If b is an integral idea] prime to m, then

h"b_—_l
(E)=C " forlep,

(Do this first, using Exercise 1.4, in case b = p is

er (No—1), and Hensel's lemma,

ek

1a

i

s

prime. Then for general
~ b =) n,, note that, putting No = 14mr,, we have

Nb =[] (1+mr) =14+m Y n,r, (modm?))
- Exercise 1.7.

(-0

o

If a and bel°® are integral, and if ¢ = a(modb),

. Exercise 1.8. Show that Artin’s reciprocity law (Chapte_r V11, § 3.3) fora
~ simple Kummer extension L = K(%/a) implies the following statement: IJ:
R 2nd b < I@, and b’ b~ = (¢) is the principal ideal of an element c € K

= - a a S,
® 7!“6!! that c e (K})" for all ve S(a), then ({}) = (f,) Note that for vé

2, Let G,b;---

& - K=Q,m= .
~ Exercise 1.9. Specialize now to the case Q, ot

~denote arbitrary non-zero rational integers, and let P, 0, ..

3 bol (E)=(i)=il is
. 0dd rational integers. For (a, P) = 1, the symbol {5 P)
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defined, is multiplic

tive in each argument separately, and satisfies
a

(;) = Gj) ifa = b(modP).

Artin’s reciprocity law for Q(J/a)/Q implies
. f_’) . (‘3) i P = 0 (mod8ao),
™) P 0

" : = 2%a,, with a; odd. (Usc the
denotes the “‘odd part of a”, 1.¢. @ o0 o

= ] (mod 8) are 2.adic squares.)
9 it is easy to derive the classical law of

where a,
fact that numbers

Exercise 1.10. From Exercise 1
quadratic reciprocity, namely o
R wt (D)(9) -0
(3)=¢n7 (3)-cn A
a *
Indeed the formula (*) above allows one to calculate (}—)) as function of P
er of steps, and taking @ = —1 and 2 one

in a finite numb
for any fixed a in ily. For the last, define

proves the first two assertions eas

@.0=(3) (%), for (P,0) = 1.

Then check first that if 7 = Q (mod 8) we have
-1
(P, 2 )

and the given formula is correct. (Writing @ = P+8a one finds using
Exercise 1.9 that, indeed,

Q 8a\ 8a\ —P
®-3-0)-(2))
Now, given arbitrary relatively prime P and ¢, one can find R such that
RP = Q(mod 8) and (R, Q) = 1 (even R = 1 (mod Q)), and then, by what
we have seen,

(P,0Y(R,0) = (PR, Q) = (”El)

Fixing R and varying P, keeping (P, Q) = 1, we see that (P, Q) depends
only on P (mod 8). By symmetry (and the fact that the odd residue classes
(mod 8) can be represented by numbers prime to any given number), we¢
see that (P, Q) depends only on Q (mod 8). We are therefore reduced to
a small ﬁn‘itc number of cases, which we leave to the reader to check. The
next exercise gives a general procedure by which these last manoeuvres can
be replaced.

¢ h EXERCIgRg

. : e No i

“i"’; - mip::].Rcs‘d“‘" Symbg] (Hilbert, 1y 351
e assu City law fop » Hlasse)

,§ 6. The symbols m, K| 5 ol E(Umnmr CXtensions, 4

in Exercise 1. Foraand pe gs . Tu- @) have the o use Chapter

" b, by the equation
| -%@ )' mj ’

(\,-a)vt”” = (a, b),Va

. * v 3

" ghere Vi KJ = G s the local Ay

A K(%/a)/K. in m

ﬂ . 2.1. Show th

* of the choice of 7/a.

:t " ~y
P associateq with the Kumme
T
at (a, by i
Jv 1520 mth root of which is inde d
§ :pendent
B Exercise 2.2. Show (a, 0),(a, b'), =(a, by} g (@ b)(a, b)
v ¥ v a » 0 v =

 Thus, for each prime v of K, we have 4 b
e i ghimithizoots of iy, a bilinear map of K

! (ad', b),.
% K* into the

" ExERCISE 2.3. Show that (a,5), = | if o

. . . » 9y = eithe Ay
 that there is a unique bilincar extension of (g b; C[’OO;:E € (kD)
* This extension is continuous in the r-adjc gopuolo o b
bya finite table of values, because KRN s o Bnite
_mzllm]u' where.]mlu 1s the normed absolute value of m at :) grs{up (oF order
~ extended function on K3 x K¥ can be described purely | -lll Pk

d t Of the field K f rh~ 5 e ocally, 1.e. 15 inde-

. en of which K, is the completion (b .
f ¥,), and induc o o et iy
_u-uc of yr,), uces a non-degenerate pairing of K*/(K*)™ with itsel
- into Yo h.owcvcr_wc will not use these local class field theoretic facts in
- most gf this exercise. For a general discussion of (g, b),, and also for some
3 explicit formulas for it in special cases, see Hasse’s “Bericht”, Part 11
pp. 53-123, Serre’s “Corps Locaux”, pp. 212-221, and the Artin-Tate notes,
1?., Ch. 12. The symbol (g, b), defined here coincides with that of Hasse and

Serre, but is the opposite of that defined in Artin-Tate. While we are on

, and hence

2y, and can be describeq

- the subject, our local Artin maps y, coincide with those in Serre and in

amt

%:;"Artin—Tate, but are the opposite of Hasse's.
*“ EXERCISE 2.4. Show that (g, b), = 1 if b is a norm for the extension

~ K,/a)/K,. (See Chapter VI, § 6.2; the converse is true also, by local class
'~ field theory, but this does not follow directly from the global reciprocity

b

o,

KH™; in particular,

" Exercise 2.5. We have (a,b), =1 if atbel ‘ :
® (@ —a), = 1 = (a,1—a), (This follows from the purely algebraic lcmn;:a‘.
‘;‘_‘ ‘Let F be a field containing the group jin of mth roots of wn!):rand letae 1 .

" —q is a norm from F(Ya). Indeed, let

~ Then lement /
- Then for every x e F the e s of the Galois group P

'_ - subgroup p, of u, and is independent of

== g i /o is an isomor , :
‘ a. The map o / the choice of a. Hence if(f)sa

-
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system of represen

m/d
x"—a= H (X—'fﬁ) = NF(:)IF(LI(—"'(I“)):

i

tatives of the cosets of jig in fm WE have for each x e F

L&pm
.D. s 2
Q'I;Exenznss 26. Show that (a, )b, @) = 1. (Fust vse bilincarity on
1= (abs '_ab.)ﬂ'-)

dean, we have (a, b), = 1 unless K, i's real,
d m’-_- 2. (In the latter case we do in fact
ise 2.4. Note that m > 2 implies

Exercise 2.7. If v is_ ar;(hime
both @ < 0 and b < 0 1 &,, and
h:ve (a, b), =—1; sec the remark in Exerc

i himedean v.)
that K, is complex for every arc -
EXErCISE 2.8. (Relation between norm-residue and power-residue symbols.)

v(b)

If v ¢ S(a), then (4, b), = (f’) ; in particular, (a, b), = 1 for v ¢ S(a, b).
y » Yo v

(See the first lines of Exercise 1 for the definition (.}f S and_ S(a), etc. The
result follows from the description of the local Artin map 1n &erms of the
Frobenius automorphism in the unramified case. More generally,

e(a)v(b) ,v(b)}, —v(a)
U¢S=‘-‘-(a,b)’=(.§)’ wherc:::(—1)()(ba b

is a unit in K, which depends bilinearly on a and 4. To prove this, just
write @ = n°@a, and b = n°®b, where v(n) = 1, and wqu out (a, b), by
the previous rules; for the geometric analog discussed in remark 3.6 of
Chapter VII, see Serre, loc. cit., Ch. III, Section 4.)

EXERCISE 2.9. (Product Formula.) For a,be K* we have [] (a, b), = |,
the product being taken over all primes v of K.

EXERCISE 2.10. (The general power-reciprocity law.) For arbitrary a and b

in K* we define
a a\°® a
(5) =uls—!-) (5) i ((b)s(“’) ’

where ()" is defined in Chapter VII, § 3.2.

Warning: With (g) defined in this generality the rule (Eg) B (g) (%)
does not always hold, but it does hold if S(b) n S(a, a’) = S, and especially

if b is relatively prime to @ and 4. The other rule, (f_b') = (g) (g,) holds
in general,
Using Exercises 2.6, 2.8 and 2.9, prove that

HIH . S

F.XI{R(‘ISES

Iw.ticular .
() -1
b/ \a) =G0, il S(a) ~ s(p

A
(L) = UE]S(?-' b S0y =g
 EXERCISE 211. I K =0Q ang
g—; in Exercise 1.10, we have (x, p)
 are equivalent with
?fe P-1 Py
‘ (—-I,P)z= (=1 =, (2,P),= o ’
i'or odd P and Q On the other hand, th € easi] o
- working .locally n Q,. In particular, the fact that (1+4c, b) y_cstabhit(ﬁi
~ from which the "_’alue of_(a, b), is easily derived for all a b uzsih (El) -
9.2, 2.5 and 2.6, is a special case of the pext exercise, R

)=,

= {2; EO}, and fOI' P S0

= = 1. Henee the resyltg

of Exercise 1.10

P-1 -
and (P, Q)z‘—‘- (_1)__i .g{‘l‘
ese formulas ar

EXERCISE 2.12. An element g e K s called v-primar : /

3 ; . Y (for m) if K(/ayk
s unramxﬁec.i atv. Forov ¢S, there is no problem: an element 2 is vp(r\ug);ﬁ\
jf and only if v(@) = 0 (mod m). Suppose now y

' v divides m and m = isa
- prime number. Let { be a generator of . ‘

3 ) : and put 2 = 1-. Check that
~ A*~!/p is a unit at v, and more precisely, that 37! = —p (mod p), so that

j:ﬂl#ul/p = —1 (mod ;?u). Let a be such that g = | (mod pAoy), so that we
g ‘have a = 1+4°c, with ceo,. Prove that a s v-primary, and that for all b,
\ (a, b), = C—S(E}u(h),
8 where S denotes the trace from k(v) to the prime field and ¢ is the ¢-residue
of c. Also,if a =1 (mod pip,), then ais v-hyperprimary, ie. ae (K5,

" (Let o® = a, and write @ = 1+ Ax. Check that x is a root of a polynomial
~ J(X) € o,[ X] such that f(X) = X"~ X—c(mod p,). Thus f'(x) =—1#0
~ (mod p,), so K,(x) = K,(Va) is indeed unramified. And if ¢ = 0 (mod p,)
" then f(X) splits by Hensel's lemma, so K,(7/a) = K,. Now x* = x+¢
~ (mod p,), so if Nv = p’, then
: l. : xF = x" = x4ctcP+...+c” = x+5) (modp,)

bn the other hand, if o’ = [ = 1+ A/, then X’ = x—1 (mod p). Com-
~ bining these facts gives the formula for (a, b),.)

- Exercise 2.13. Let p be an odd prime,  a primitive pth 1'0(:; zf_'ml“iyi
-- = Q(), and m = p. Then p is totally ramlﬁFd in {Y, im’ ofglying
~ generates the prime ideal corresponding to the unique I};TUE;:E: T
= overp. Let U, denote the group of units = 1 (mod A) in A, ot fc,)r:ierp

o e i tes U,/U,,,, which is cyclic 0 2
- Then the image of n, = 1—4' genera ilVig be preceding exercise,
and the image of A generates KF/(K7)'Uy. By the P
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TSI, 5 S
AL =np1-4 = N2 1 P
ce the elements 4, 2 p|, = ?, 50 thesc
P ((?:'))7(;??;“ But that group is of °§g§;ﬂlﬂf e
t v g :
gg:s::;‘tgrs are int;epcndcnt o PEYBORS:

Y(tiapp Ay forall iy &

@ (unpe= (755 ’?@y)»(’zgjé)’?fi ;[Hf{;r Sl ae Upand be U,
Ifi+j = p+1, then » 0)y =

o 1, fort<isp—1

(d) (a, b), is the unique skew-

a) and (c). ‘ ;

F (a) note 1;+ A = M+ s divide thr0ugh. by Hi+js End ufg,};?irmes;;:;l

:Engrb(iallj‘);learity-fthe oddness of p, which implies (a, b) f‘— ll(a\’vs ks gexce<[

d(a,a =1 in particular, is used here. The rest all_ o. o t yt,h . }E)

i;‘l:r (c‘)I’whj:h is a consequence of the preceding exercise; but note that the

first (p—1) cases of (c) are trivialities, because

= I<i<p-1.
() b= (1=2, 29, = 1= (@A), =1 forl <i<p-1)

EXERCISE 2.14. (Cubic reciprocity law.) Spec:ializc ‘to .pa1=_§ u[z CtIhe pre-
ceding exercise. The ring of integers R = Z;l-ZC 1sa pnncipu i e'ah On—lainf
whose non-zero elements can be written in the form A"{"a, with a = +
(mod 3R). Prove

* (E> = (é), for relatively prime a and b, each = +1 (mod 3R),
a

(§-r-

and also
({-c
a

As an application, prove: If ¢ is a rational prime = 1 (mod 3),‘ then 2 is a
cubic residue (mod ¢) if and only if ¢ is of the form x*+27y* with x, y € Z
(Write ¢ = n7t with = = +1 (mod 3R). Then Z/qZ ~ R/zR, so 2 is a cubic
2 n
residue (mod g) if and only if (1—[) = 1. Now use (*), and translate (5) = 1

into a statement about ¢.)

symmetric pairing K*x K¥ — p, satisfying

**) , for a = +(143(m+nd).

EXErCISE 2.15. Let L be the splitting field over Q of the polynomial
X°—2. The Galois group of L/Q is the symmetric group on three letters.
Using the preceding exercise, show that for p # 2,3 the Frobenius auto-
morphism is given by the rules:

Frio(p) = (1), if p = 1 (mod 3) and p of the form x?427y2,

Frio(p) = 3-cycle, if p = 1 (mod 3) and p not of the form x?+27y?,
Frio(p) = 2-cycle, if p = — 1 (mod 3),

-

Y — [ Toer(K/(KD)™, the subgroup A pencrate

" The form (x,y) = []..; (v
B itself to p,,, under which A is self orthogonal, and indeed exactly so, because
3 [X] = m* and [4] = n/, where 1 = [T). (Sce step 4 in the proof of the
~ second inequality in Chapter VII, § 9, the notations S, n, and s there being
* replaced by T, m, and ¢ here.) Thus Y/A ~ Hom (4, g,) (note by the way

I we have not used the condition that J, =
£ KJ/(K3)™, then ae Ay, ic. ael.

® and orthogonalities discussed above, this last fact 1s equivalent to th
~ statement to be proved.

.- -archimedean
" i,(K>) = K*N, /), and, for non

EXERCIgEg
Hence, by Tchebotaroy’s the

orem, t} o
1/6, 1/3 and 1/2, respectively, 1¢ densitics of these sets of o

EXERCISE 2.16. Consider ag
a finite family of elements of g *
by the mth roots of those elements.
containing S(a,,..., ), and big
Jp = L*J 1, where 77 is the g
are given elements [ ¢,

355

are

aln anp arbitrary g and

L of primes of L lying

m for veT gng S <1, such that

(i) For each i, we have . =y and

ve T !

(ii) For each veT, there CXISts an x e g* such th ; .

for all i. : : ch that (‘)'L" CII‘]L_ = Gy

Show then that there exists a Tounjt ¢ Ky such that (v, q) = ¢ for all

veTandalll </ < r Ve S E
The additional condition on T involving 77,

by theexample K = Q, m =2 7 — (o, 2

3~y
Cz,l =

IS Tecessary, as is shown
7 ,

fhr=1,aq = ]
-1, ;1 =1 To prove the

statement, consider the group

ed by the image of K;, and
the smaller subgroup A, generated by the images of the elementsa, | <i<r

e Yo)y gIves a non-degenerate pairing of .X with

that both groups are isomorphic to Gal (K(7/ K;)/K), by class field thcﬁf}-’ ;1'11-;1
Kummer theory, respectively), and, vice versa, A ~ Hom (X/4, p,). So i.'.r‘,-
‘ L*]; . Use it to show that il
: all ¢ ere 7, is the projection of X onto

a)emn,(Ay) for all v, where =, 1s proj ! 5
B o Now show that, in view of the dualities

'~ Exercise 3: The Hilbert Class Field
; ",.Let L/K be a global abelian cxtension,

CLpE _tha

p o prime of £, and i,;: i J,; Li\.&L;_
otely in L if and only 1

y splits completely 1n : 10

oy Hat 7 [1' that v is unramified mL
L -~ . . »
group of units 10 K,
" extenston

canonical injection.

B here U, 1s the :
: if i(U)c K¥*NpyJp, W . qmal abelian
fand ooty 1f\r;,1(1 ‘2 5.1, § 6.3.) Hence, the maxim 1{-1:5 m(.d is split com-
(See Chapte.l' ’ b1iﬂ‘ec’l £1t all non-archimedean p]rlm o:]p K)o, where
i nran 4 i s or Jg 5

i hich is uh'medcan ones is the class ﬁgldlto Il}:u (he Main Theorem
iy ot ol arCﬂl set of archimedean primes. (Us

S now denotes the
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; is closed.) This extep,
356 that K'NH):JL 15 C - lon
Chapter V11, § 5.1) A8 mff;;x- we will denote it !ayK . ihoyv that t,
.( caI}f)Cd the Hilbert cla'ss fiel inciuC” an jsomorphflsm of the idea] clagg
Frobenius homomorphism ik Galois group G(K'/K). (Use the np
T

f K onto the Thus the degree [K': g
oup Hy=1x/Px © e 5 Ix) Thus : -
'%rh cof:'e L momom;‘“:' : fi ]x:f K. The prime ideals in K decomp,,.,
equal to the class number cal class, and, in particular, the ones which s,
in K’ according to their id : e ideals. An arbitrary ideal

completely are exactly the pnnc?:)al =p 7 |
K is principal if and on]}:'iffx'/l ' e K" = (K)'c ... can be infinite (s,
The “c;a;s ﬁgqn:’:f: f:u':f t‘-\-vo steps of it, and the commutative diagry,

Chapter IX). Ust
(see (11.3), diagram (13)) .
Ig _Fxi=_, G(K'/K)

vV
con

Iy ,F‘.._'IL G(K”[ K),

. : ilbert’s conjecture, to the effect that every ideal i
f;ii]::al;z;?:dt;l;t ;I:d?ftv.sracsoguivalcnt to the statemc:'lrt tfla_t the Ve,
lagerungt ¥ was the zero map in this situation. Now G(K"/K') is the com
mutator subgroup of G(K"/K) (Why?), and S.O AI'U.II conjectured‘(t};.—_»

“Principal ideal theorem” of group theory: If G is a ﬁff:f’-’ group and G* i,

commutator subgroup, then the map V:(G/G) » G/(G)° is the zero miap

This theorem, and therewith Hilbert’s conjecture, was then proved b,

Furtwingler. For a simple proof, see Witt, Proc. Intern. Conf. Mar,

Amsterdam, 1954, Vol. 2, pp. 71-73.

The first five imaginary quadratic fields with class number # 1 are tho--
with discriminants —15, —20, —23, —24, and —31, which have class
numbers 2, 2, 3, 2, 3, respectively. Show that their Hilbert class fields are
obtained by adjoining the roots of the equations X2+ 3, X2+ I, x3-x—1],
X*+3, and XL XA respectively. In general, if K is an imaginary
quadratic field, its Hilbert class field X is generated over K by the j-invariant:
of the elliptic curves which have the ring of integers of X as ring of endo-
morphisms; see Chapter XIII,

LetJg dfnotc the group of idéles which are positive at the real primes of £
and are units at the Don-archimedean primes. The class field over K with
norm group K*Jy s is the maximal abelian extension which is unramificd
at all non-archimedean primes, but with no condition at the archimedean
Slr;“;_;i;e; us denote it by K,. Let P} denote the group of principal ideals of
: ‘ a), where g is a totally positive element of K. Show that Fy .
§ives an isomorphism: /,/P} A G(Ky/K). Thus, G(K,/K") is an el

s 1 n elementary

1 Called the fransfer in Chapter 1V, § 6, Note after Prop, 7

Y[Ky:K']=1or 2, according to whether

EXERCISES

abelian 2;gr0up,*i50m?rphic to Pe/Py. Show that (Pe:PEY(K.: ot 3?7
where K = K r\.],\..slls the Zroup of totally DOSitj;\; K ( st K$) =2,
is the number of real primes of g € units in K, and r,

We have Q, = Q, clearly, byt this is a
theorem, to the effect thyt Q1
which is unramified at all nop.
der Zahlen”, p. 130, or “Dioph
now the case in which K is req|

POOT result in view of Minkowski's
'las NO non-trivig] extension, abelign ar not
archimcdcan primes (Minkowski "Geometrit‘:
antische Approximationen™ l

e Appi P 127). Consider
quadratic, [K: Q] =2 and ry = 2. Show that

;\’e:—lorNc—l whe i

. amental unit in K, and » — ; 8 N Rt )
funds o t;l N = Ny For example, in case K = Q(/2) or
Q(\/ ) we ha — M, because the class number is 1, and consequently also
K, = K, because the units ¢ — + ¢

‘ ~’2;mds:=l1+;’ av _
the other hand, if K = Q( /3), th\cn again K“(= K S&E:\::nim,r; ble.c“‘ﬁ)sr;
8 = 2+./3 has norm 1; show that K| = K(\fﬁl]_, In gcnterTa-l \l\'hcn‘—l
is not a local norm everywhere (as in the case X = Q(./3) just c)onsidcred)
then Ne = 1, and K, # K’ However, when —1 is a local norm cwcr\'whcrc|
and is therefore the norm of 4 number in X, there is still no general rule fo;
‘predicting whether or not it is the norm of a unjt, '

Exercise 4. Numbers Represented by Quadratic Forms
Let K be a field of characteristic different from 2, and
J(X)y=3% a XX,
a non-degenerate quadratic form in n variables with coefficients in K, We
say that f represents an element c in K if the cquation f(X) = ¢ has a solution
X = x e K" such that not all x, are zero. If frepresents 0 in K, then f represents
all elements in K. Indeed, we have
(X+7Y) = (XD +1B(X, Y)+(Y).

If f(x) =0 but x # (0,0,...,0), then by the non-degcnern;y there ils a
¥ € K" such that B(x, y) # 0, so that f(rx+y) is a non-constant linear function
of t and takes all values in K as r runs through K. N

* A linear change of coordinates does not affect qgcstions ofrcprescmablhgl,
and by such a change we can always bring f to diagonal rm?l:f-:oz-fakna
with all ¢, £ 0. If f=cX{ — g(X3,..., X)) [hcn-f rcpiusjcrtlts ;{C;CC
only if g represents ¢, becausce if ¢ rcprcwnt:ﬂ 0 then it rcPrLSL_n]S\:ri'lb]es is,
the question of representability of non-zero c's by fofmf g \"u‘i'l‘blL‘(‘i e
equivalent to that of the representability of 0 by fOf_mjfm ’;—gcr; —
latter question is not affected by muItlphcan:ﬁn Or)’—b.‘l F'lnn?rcatinﬂ b
hence we can suppose f in diagonal form with a; = 11 -

EXERCISE 4.1, The form /= X does not represent 0.

. ifbe (K"
ExEercise 4.2, The form f = X —b y? represents 0 if and only if b e (K?)
X il
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ivalent:
¢ is a norm from .o statements are €qul )
Exercise 4.4. The foﬂf;"";sy 2_ 7% +acT? represents 0 in K.

= fi K(./b).

(i) The form f* ‘:;a norm from K(\/a) and a nﬁon;rél Lm—mK( \(/\/h) ,

(i) ¢ is a product \/ab) is a norm from thf': € = ol la, N
(ﬁ.[) ¢, as clemcrlt of f( b}';-'czz rep[cscl'lts 0in the field K(V'ah)

(iv) The l‘:orrn.v = fme peither @ nor b is a squarc in K. Then the

(We may obw?uﬂy 855) ‘; clear because the reciproca.l ofa norm 1,5 anorm,

equivalence of (i) and (ll_ﬂl ad (iv) follows from Exercise 4.3 with K replaced

and thcequivalcnee of(lﬂ)’ (]l)¢(l'11), and we can assume

therein b;f K(\/"g:' Ij.ts::;imefm?aji,:::eis obvious. Then Gal (L/K) is 4
ab ¢ (K*)*, for otherw: of elements 1,9, 0, T such”that _;3, IO’, and B leave
four-group, ?onslstmg and /b, say. Now (i) <> (ii'): 3 x, y € L such
fixed, respecnv'ely. ’/ab’d‘/:’l*’y”’ _’_: ¢; and (iii) <> (iii") 3z € L such that
;]fit!:.‘-’c: x’}};c:ccy.(?il):» (iii) trivially. T;f(l(i;egore daffpuflle (l“i'Ji_I put

2 e * = u, i.e. UE a), an = 1. Hence
;y=H?lb::it‘;lt,hizfe;h;cok(éhhaa;fer V, § 2.7) for the extension K(Ja)/K, there

7P/

-1 _ = z°/x. =
exists x # 0 such that x* = X and x*~! =u. Now put y /x, and

heck that (ii’) is satisfied.) .
3 So far wf: h)avc done algebra, not arithmetic. From now on, we suppose

K is a global field of characteristic # 2. .

Exercist 4.5. The form f of Exercise 4.3 represents 0 in a local field X,
if and only if the quadratic norm residue symbol (b, ¢), = 1. Hence f repre-
sents 0 in K, for all but a finite number of v, and the number .Of v’s_ for which
it does not is even. Moreover, these last two statements are invariant under
multiplication of f by a scalar and consequently hold for an arbitrary non-
degenerate form in three variables over K.

EXercise 4.6. Let fbe as in Exercise 4.4. Show that if / does nof represent 0
in a local field K,, then a ¢ (K3)?, and b ¢ (K?)?, but abe (K*)?, and ¢ is
nof a norm from the quadratic extension K,(\/a) = K,(\/b). (Just use the
fact that the norm groups from the different quadratic extensions of K,
are subgroups of index 2 in X*, no two of which coincide.) Now suppose
f:ouvcrsely that those conditions are satisfied. Show that the set of elements
in K, which are represented by fis N—cN, where N is the group of non-zero
norms from K(,/a), and in particular, that S does not represent 0 in X,
Show, furthermore, that if N—cN # K}, then —1¢ N, and N+ N < V.

chc; / represents every non-zero element of K, unless K, ~ R and f is
positive definite,
Exercise 4.7, A form Sinn > 5 variables over

0 ualess X, is real and / definite, a local field K, represents
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ExEercise 4.8, Theorem: Let K
; Kb
quadratic form in n variables op W sl i

cr K whi o= !
vof K. THERT Peprasontet 4 Py which represents 0 in K, for each prime

Forn = 1, trivials n = 2 ¢

i , i =2, cf. Chapter VII,
34 tc; ;i:duc?, th- ]Chﬂpicl‘ VII, §9.6 and Exercise 4.3; n = 4, use Exercise
; ¢tothecasen = 3; finally, for n > 5, proceed by induction: Let
‘ f(X)=a,\rf+bx§—g(x3,...,x,),
whigcog hi&sln ﬁ_.z 2 3 variables, From Exercise 4.5 we know that g repre-
??‘)1 isﬂﬂ lence c\:‘ry number in K, for all v outside a finite set §. Now
o : O_P‘?_ﬂ n K. ’HCHCL‘, by the approximation theorem there exist
clements x, _‘md’ X, in K, such that the element ¢ = axi+bx3 # 0 is repre-
sc}r:lt,cd b)l'Yg in K, for a_ll vin S, and hence for all v, By induction, the form
c¥ —g(X5 ..., X) in n—1 variables represents 0 in K. Hence 1 does.)

EXERC_ISE 49. Corollary: 1t n > s, then f represents 0 in K unless there is
a real prime v at which £ is definjte
. Exercise 4‘10. A rational number ¢ is the sum of three rational squares
if and ogly if ¢ = 4"r where r is a rational number > 0 and # 7 (mod 8);
every rational number is the sum of four rational squares,

EXercise 4.11.

The statements in the preceding exercise are true if we

replace “rational” by “rational integral” throughout. (The 4 squares one

is an immediate consequence of the 3 squares one, so we will discuss only

the latter, although there are more clementary proofs of the four square

statement not involving the “deeper” three square one. Let ¢ be a positive
integer as in 4.10, so that the sphere | Y|? = X1+ X3+ X2 = ¢ has a point
X = (xy, X, X3) with rational coordinates. We must show it has a point
with integral coordinates. Assuming x itself not integral, let z be an integral
point in 3-space which is as close as possible to x, so that x = z+a, with
0 < |a|* < 3/4 < 1. The linc / joining x to z is not tangent to the sphere;
if it were then we would have |a]* = |z|*—|x|* = |z|*—¢, an integer, contra-
diction. Hence the line / meets the sphere in a rational point x* # x. Now
show that if the coordinate of x can be written with the common denominator
d > 0, then those of x can be written with the common denominator
d = |a|2d < d, so that the sequence x, ', (x'),... must lead eventually
to an integral point. Note that ¢ is in fact an integer, because

& = [alPd = [x—2]d = (5] 2x, )+ 2] = ed=2(ds, 2 ]2

ExErciSE 4.12. Let f be a form in three variables over X. Shc_>w that if
[ does not represent 0 locally in K,, then the other numbers in K, not

- sk
represented by f constitute one cosect of (K¥)? in Ac._ (Clc?rly one can
_bY?—¢Z?: now use Exercise 4.6.) Using this, show .tl.ml
, resent all positive

assume f = X’
if K= Q and f is positive definite, then f docs not rep
integers. (Note the last sentence in Exercise 4.5.)
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360 related work sce O0.T ara; “pn,
For further developments :n(;p,-ingcr, 1963) or Z. L. Box:cwé and I
duction to Quadratic F‘,’,”?"N.mn’ Moskva, 1964). [Enghsh ' anslaoy
Safarevi&, “Teorija Cisel” ( afarevich, “Number Theory”, Academic py..
Z. I Borevich and L. Rt;aisbjgﬁon. §. I Borevicz and I. R. Sﬂfzxm.ml
rk: German o
fzea‘}’ﬂelr:&corie", Birkhiiuser Verlag, Bas
ise 5: Local Norms Not Global Norms, etc.

Exerc g

~ (Z/2Z)% and lct §, ;-
e 1 w(l,ﬂs":“‘) (Z/ 15 l\__
Let L/Kbc Galois wﬂh ﬁgcpifm:dfa[e fields left fixed by £y @, and r
andXJ- be !h;:in;c :,u;['d‘(K?J fOl' i= 1, 2’ 3, aﬂd lCt N = NL,'K(L*)‘
Py, dy' : that N1N2N3 = {xEK*lxz EN}- (This js Pure
E:ERC[SB: 5-!@'22-22“ inclusion is trivial, and the other can be pro.. .
a]gc ra, not ari e 5 3)
used in Exercise 4.3. '
by the meth;’i’ Now assume K is a global field. Show that if the locy)
dc;in ;tfs:z over K is 4 for some prime, then N; N; Ny = K] * (cf. Chapte,
that all local degrees are or 2. Fgp
VIL ST1Ak e istic # 2, and let K, = K(./a)) 1,
simplicity, suppose K of characteristic ; ) A £ = Sl I
i=1,2 3’ For each i, let S, be the (infinite) set of primes of X whicl, split

in X, and for x € K* put
‘P(x) - H (azsx). - H (ﬂ,, X), ='Hz(a3’ x)ﬂ a H (als x)u

ve S, veS] s
=[] (@a,%), =[] (a3, %), = +
vesy PES)

where (x,y), is the quadratic norm residue symbol.  Shoyw that
NN, Ny = Ker ¢ and is a subgroup of index 2 in K*. (The inclusion
N N, N; < Ker ¢ is trivial. From Exercise 5.1 above and Chapter vi,
§ 11.4 one sees that the index of Ny N,N; in K* is at most 2. But there
exists an x with g(x) =—1 by Exercise 2.16.)

EXErCiSE 5.3, Let K= Q and L = Q(/13, \/17). Show that if x is .
product of primes p such that (1%) =—1(eg. p=2, 3 Iy Wi ) Thien

X
o(x) = (]—7) Hence 5%, 72, 102, 112, 142, . ., are some examples of numbe;s

- f::c:sa 5,;- Suppqse now that our globa] 4-group extension L/K has
is 4 Lclzmj;e ot the're 18 exactly one prime p of K where the local degree
; W be the prime of 7, above ¢ and prove that - Y(G, L* = 0, but

Tl £ - (Use the e

paragraph 114, Tt : _acl sequence near the bepinp;

local degrees is i 1C map g jq surjective, g5 always whenp ;:l ;:glnmng o

i 1¢ globa] degree. Apg the map g: g - (e }C) cnf; hs

ve, . v d o) = (G, C
only one prime.) SSumption that the local degree is 4 f'cl;z
Let A4, resp. A

to K (resp. tf Ku)wi,s ble 1“;; il;crtcuip of clements jq L*, resp L2, whose norm

the above thay , A be the closyre of 4in L2 1t follows from
A= (L"“)ﬂ—l ) S LS U T T

and that W &y,

| '_E:(Ltv}pﬁl(Ltw)o-l(Ltw)r-l
:isefci)ie!;ldex 2 ir‘1 A,. Now, as ig well known, (he
NUK(X)O;C;.]!tu(cl}l]lc[ht'\\med’ torus of d}mcnsion 3 defined by the equation
o e gy at T(K) = .4. and 7(K) = 4 w Hence we get examples
Hirms Bt gmup'of rr?rmnm' POIRts on a torus T is not necessarily
€ 8roup of v-adic poings (see last paragraph below).  However,

it is not h; . iy
not hard to show that if 7 IS 4 torus over X split by a Galois extension

L{K, then T(K) ic dene, - , :
exisés " prim(c rj’ ': df”m In 7(K,) for every prime » of K such that there

whenever o i archimedeay.

where £ 13 Then 7 vt s - .81 = 0

: xcept at 2, but totally ramified at 2,
and consequently there IS just one prime, 2, with local degree 4. Let M = Q)
wh'crc =2 = V=1, and let L, and M, denote the completions at the
primes above 2. It js casy to give an ad-hoc proof without cohomology that
the elements of . with norm 1 are not dense in those of L?: just check that
the element z = (24 (2—iYe M, is a norm from L, to L,, but that z(Ar*)?
contains no element y e M such that » is a global norm from L to M and
such that A, o) =1

Exercise 6: On Decomposition of Primes

Let L/K be a finite global extension and let S be a finite set of primes of X,
We will denote by Spl. (£/K) the set of primes v ¢ S such that v splits com-
pletely in L (i.e. such that L @ K, ~ K'“%)), and by Spl§ (L/K) the set of

K .

primes v ¢ 5 which have a split factor in L (i.e. sut;h that there exists a
K-isomorphism L — K,).  Thus Spls (L/K) < Splg (L/K) always, ﬁl_\?
equality holds if K is Galois, in which case Splg (L/K) has density [L: K]
by the Tchebotarov density theorem. (Enunciated near end of Chapter

VIII, § 3)
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362 datir L and M are Galois over K, then
W
Exercise 6.1. Sho T Spls (M) € Spls (L),

(Indeed, We BEYE._ pg7K) = Spls (L/K) 0 Spls (M/K).

Spls

M/K)
(L= Spls(L /-.-,[LM:K] = [M:K]:- L2 M

50
L M= Spls(M) < Spls

«cness used 7) Hence
e O = Mew Spls (1) = SPIs (M),

mial f(X)eK[X] splits into i,
Amiase s ‘:11;8 b;;a‘r:b jl;;iﬁa riﬁrfber ojf;rime ideals p of K, then f spjy;.,
o ol 4 K, (Take L = splitting field of f(X), and Ar - K
jnto linear factors in L.bat £ has integral coefficients and unit discrimingp,
and _.S‘ large erl?u?]h Soo:c that everything in this exercise goes through i
ou{sjdia?"&ﬁﬁiﬁiﬁvéé‘" and “all but a finite number of primes v b,
we repl
“all p in a set of density 1.
allilx:l;; 6.2. Let I/K be Galois with group Q, let H be’a subgio“ pofG
and let E be the fixed field of #. For each prime v of K, let G denote 4
decomposition group of v. Show th.at v :sphts completely in E if qnd only if
all of the conjugates of G° are contained in H, where.as v _has a split factor in
E if and only if at least one conjugate of G* is cqntamed in f{.l Hence, shoy,
that the set of primes Spls (E/K) has density [E)G pHp™)/[G]. Now

P
prove the lemma on finite groups which states that the union of the conju-
gates of a proper subgroup is not the whole group (because they overlap o
bit at the identity!) and conclude that if Spl; (E/K) has density 1, then
E = K. Application: If an irreducible polynomial f(X)e K[X] has a roo:
(mod p) for all but a finite number of primes p, or even for a set of primies v
of density 1, then it has a root in K. This statement is false for reduciblc
polynomials; consider for example f(X) = (X?—a)(X?—b)(X? —ab)where
a, b, and ab are non-squares in K. Also, the set Spl’ (E/K) does not in
general determine £ up to an isomorphism over K cf. Exercise 6.4 below.

EXERCISE 6.3. Let H and H' be subgroups of a finite group G. Show tha!
the permutation representations of G corresponding to H and H' are iso-
morphic, as linear representations, if and only if each conjugacy class of ¢
meets A and H' in the same number of elements, Note that if H is a normal
subgroup then this cannot happen unless H' = . However, there are
:’::mcgi‘{z th:?bf:oum H and I'I' satisfying the above condition which arc
= 192} g"i‘ ; check the fol]owmg_one, due to F. Gassmann (Marh. Zeit ,

» 1926): Take for G the symmetric group on 6 letters (x,) and put

EXERCISES 36
h3

_ ,H ={l, F(“ 1 X)X, X)), (X, X)(X, X)), (X, X)X, x )
H'={1, (Xx, XD(X3 X)), (x, X)X, X)), (X3X)(x.x )}3
(H leaves X4 and X¢ fixed, where f leaves nothing ﬁxc;i' b o
# lof Hand H' are conjugate in G.) Note that there c;<' ol
of Q with the symmetric Broup on 6 letters as Galois gl:;oup
EXERCISE 6.4. Let I, be a finjte Galois extension of Q,let G =
let £ and E' be subficlds of I, corresponding to the ‘s g
of G respectively. Show that the following conditions g

G(L/Q), and
ubgroups H and g
) _ . re cquivalent:

(a) H and H sa.tzsfy the equivalent conditions of Exercise 6.3

(b) The same primes p are ramified in £ as iy g th
ramified p the fiecomposition of pin E and E’ s thc,samc in the sense
that th}: collection of degrees of the factors of p in £ is idcn?ucal with the
collection of degrees of the factors of pin E', or equivalently, in the sense
that A/pA =~ A /pA4’, where A and A’ denote the rings of integers in E
and E’ respectively. ) )

(c) The .zeta-fm')clion of £ and E’ are the same (including the factors
at the ramified primes and at 0.) :

and for the nop-

Moreover, if these conditions hold, then E and E’ have the same discriminant

If H and H' are not conjugate in G, then E and E’ are not isomorphic:
Hence, by Exercise 6.3, there exist non-isomorphic extensions of Q with the
same decomposition laws and same zeta functions. However, such examples
do not exist if one of the fields is Galois over Q.

Exercise 7: A Lemma on Admissible Maps

Let K be a global ficld, S a finite set of primes of K including the archimedean
ones, H a finite abelian group, and ¢:/° - H a homomorphism which is
admissible in the sense of paragraph 3.7 of the Notes. We will consider
*“pairs” (L, «) consisting of a finite abelian extension L of X and an injective
homomorphism a: G(L/K) — I

EXERCISE 7.1. Show that there exists a pair (L, ) such that L/K is unrami-
fied outside S and ¢(a) = a(F, 4(a)) for all a € I%, where Fy is as in Section
3 of the Notes. (Use Proposition 4.1 and Theorem 5.1.)

ExercisE 7.2. Show that if ¢(r) = [ for all primes v in a set of density 1
(e.g. for all but a finite number of the primes of degree 1 over Q),Ithcn ®
is identically 1. (Use the Tschebotarov density lhcorcn-] and Exercise 7.!.)
Consequently, if two admissible maps of ideal groups into the same finite
group coincide on a set of primes of density 1, they coincide wherever they

are both defined.

Exercisg 7.3

Suppose we are given a pair (L, a") Stfch' that
o' (Fpx(v)) = o(v) for all v in a set of density 1. Show that (L', «') has
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in. ise 7.1: in f’nlC[
. pair constructed in. Exercis j in fact,
gl oW gi‘,i:l)a common extension M, then L —

the same Pmpc:.fi:‘:. are containe® © v o Gnite abelian. Let 0, resp. ¢,

w that if L' 5 3
s 0 Gy oy sppie ML VG0, v, G
be the canonical projeWn\lr'ﬂ § 3.2 we have @000 Fagx = o 0" 0 Fax. Author Index
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Borel, A., 262, 263, 264
H

E with group G, let H be the subgroup corre-

during the proof of the
der the following commutative diagram (cf.

extesision'of JOGHRRTEE Borevié, Z., 1., 360

Bourbaki, N., 51, 67, 119, 127; 138, Hall, M., Jr., 219, 230

sponding to E, "g)d L
Chapter VII, § 11.3): 5S ~ A%H.C 143, 161 Harder, G., 258, 265
H"(H,Z)zf!"'—'cs/NLlECf-”H (H,C.) Brauer, R., 160, 225, 230 Harish-Chandra, 262, 263, 264
cof | o) I Neix . | cor Bruhat, F., 256, 264 Hasse, H., 204, 211, 230, 232 249
A°G, Cy). Brumer, A., 248, 303, 303 269, 271, 273, 274, 275, 278, 293,
296,299, 303, 351

A74G,Z) = G*5 Cx/NyxCL =
Hecke, E., 205, 210, 211, 214, 218,

s ~ this gi e result.
Since G*/0(H*) ~ G(M/K) this gives th ] 5 i, . 2
Cartan, H., 139, 308, 347 Mais Sacty N
Cebotarev, see Tchebotarev Hilbert, D., 267, 268, 269, 270, 278, 351,

Chevalley, C., 180, 205, 206, 230, 250,  52¢ %s¢
252, 253, 264, 265, 275, 216, 277, yoengehild, G., 197

306, 347
D I
Dedekind, R., 210, 230 i“l““\if; T‘;{ 21% 265
Delaunay, B., 267, 277 l‘j“ﬂv:-s g
Demazure, M., 253, 265 Yanagd, oy <12
Deuring, M., 293, 296
K
E Kneser, M., 255, 264, 265 )
: Koch, H., 249, 302, 303, 30
Elslg;&e;‘E;IST 122?313%0 Kronecker, L., 266, 267, 278
r [
Franz, W., 273, 279 iiﬁm J-E, 39(1)6321{3 514 10
i 277 andau, E., 210, 215, 214,
E;EEEELUEAG%Z; 3349 ' Lang, S., 51, 168, 193, 214, 225, 230,
Y g7 277 2 346
Fueter, R., 267, 277 296, Lubin, 1., 146

Furtwingler, Ph., 270, 273, 277, 356
365




