1 Group Cohomology

1.1 Definitions
Let G be a group.

Definition 1.2. A G-module A is a Z[G]-module, that is, an abelian group A together with a homomorphism
of groups G — Aut A. A morphism of G-modules is a morphism as Z[G]-modules.

This is an abelian category since the category of R-modules is, for any commutative ring R. For this
reason, the category of G-modules has enough injectives and enough projectives. If A = {a € A: ga = a}
and Ag = A/{ga —a:g € G, ac A} then for any morphism A — B we obtain morphisms A% — B and
Ag — Bg, so A — A% and B — Bg are functors from G-modules to G-modules. The functor A — A% is
left exact while the functor A — Ag is right exact.

Definition 1.3. The cohomology group H" (G, A) is the r th right derived functor of A — A% and the
homology group H, (G, A) is the r th left derived functor of A — Ag.

Remark 1.4. Give Z the trivial G-action and define Z[G] — Z by g + 1 for all g € G. Then A® = Hom(Z, A)
and Ag = Z ®z|g) A so we can identify H" (G, A) = Ext"(Z, A) and H,(G, A) = Tor,(Z, A).
1.5 Functoriality

The H" and H, are cohomological functors in the sense of Grothendieck, that is for any exact sequence
0—-A—-A—-A"—>0 (1)
one obtains a long exact sequences
0— HY(G,A) — - — H(G,A) — H"(G,A") & H™ (G, A') — ---

and
o Ho(GA) — Ho(G A" S Hy (G A)) — - — Ho(G, A”) — 0

that are functorial in the exact sequence (1). Moreover, H(G,A) = AY and Ho(G,A) = Ag since the
functors A — A% and A — Ag are left exact and right exact respectively.

Now let A (resp. A’) be a G (resp. G’) module, and suppose we have a homomorphism of groups
¥ : G’ — G and a G’-modphism ¢ : A — A’. Then we obtain an inclusion A% < A% and a G’-morphism
AG A G/, and hence morphisms

(,p): H"(G,A) — H"(G', A").

for r > 0.
Similarly, if ¢ : G — G’ is a homomorphism of groups, and ¢ : A — A’ is a G-morphism, then we have
induced maps Ag — Ay — Ay, and hence morphisms

(1#7 (P) : H’I‘(G7 A) - Hr(leA/)

for r > 0.
If we only consider a morphism G’ — G, we obtain induced maps Ag — Ag and A9 — A% and thus
maps H"(G,A) — H"(G', A) and H.(G', A) — H,(G, A).



2 Local Class Field Theory

Theorem 2.1. Let K be a local nonarchimedean field. Then there is a continuous homomorphism
br : K* — Gal(K*®/K)
such that:

1. If L/K s an unramified extension and m € K is any prime element, then (bK(F)‘L = Froby k-

2. For any finite abelian extension L/K, the map a — ¢K(a)|L induces an isomorphism
¢r/k : K*/Nm(L*) = Gal(L/K)

Theorem 2.2. A subgroup Nof K* is of the form Nm(L*) for some finite abelian extension L/L iff it is
of finite index and open. That is, the map L — Nm(L*) is a bijection between the finite abelian extensions
of K and the open subgroups of finite index in K*.

Remark 2.3. If char K = 0 then every subgroup of finite index is open.

Ezample 2.4. We consider the specific case K = Q. The isomorphisms Q' / Nm(L*) ~ Gal(L/Q,) for
L/Q, abelian give an isomorphism

lim Q) / Nm(L*) ~ Gal(Q3"/Qp).

The left hand side is the completion of Q' ~ Z}' x Z with respect to the norm topology, which is isomorphic
to Z, x Z. Thus Q;b is the compositum of the fixed fields of ¢(Z,’) and #(m%) where ¢ : Q) — Gal(ng/Qp)
is the local artin map. But we know that ¢(p) ’Q . = Frob, and that Z is the kernel of Q,; 2, Gal(Q}"/Qp)-

Thus Q} is the fixed field of Z,, and in our notes on local field extensions we explicitly describe this field

and the action of the galois group Z on it. R

Now let L/Q, be a finite field extension fixed by ¢(Z), i.e. fixed by Frob,. Then as ¢(p) acts trivially
on L, we must have p € Nm(L*) (by the reciprocity isomorphism). The only abelian extensions of Q, that
satisfy this requirement are the extensions L, := Q,((yn) (see local fields notes). Thus, the fixed field of
(p(p)) is Qp(C°); it is totally ramified over Q, with galois group Z).

ab __ nr nr __ 1;
We conclude that Q3 = Q,((p=) - QpF, where Q)F = higpm Q,(¢n)

Ezample 2.5. We describe the map ¢ : Q, — Gal(Q,(¢)/Qp) for a primitive n th root of unity ¢. Let
a=up' € QF with u € Z* and write n = mp” with p{m, so Q,(¢,) is the compositum Q,(Cpr) - Qp(Gm)-

Then ¢(a) acts on Qp(Cm) by Gm > Frobl (Gn) = ¢2° and on Qy(Gpr) by Gpr 1 ¢(u ™47

We now sketch the construction of the local Artin map ¢ .
Proposition 2.6. For any local field, there is a canonical isomorphism
invg : H2(K*/K) := H*(Gal(K* /K), K*) ~ Q/Z.

Proof. Let L/K be an unramified extension of K and set G = Gal(L/K) and Uy, = Of. From the long
exact cohomology sequence of the exact sequence of G-modules

1-U;, - L% 2,7 0

we obtain an isomorphism H?(G,L*) = H?(G,Z), where we have used the fact that H!(G,Ur) = 0.
Similarly, from

0-Z—-Q—-Q/Z—0



we obtain an isomorphism H!(G,Q/Z) = H?(G,Z), where we have used that H" (G, Q) = 0 for all r > 1
(because multiplication by m on Q, and hence on H"(G,Q), is an isomorphism, but since G is finite,
H" (G, Q) is torsion).

Finally, the map H!(G,Q/Z) = Hom(G,Q/Z) — Q/Z given by f f(Froby k) is an isomorphism
from H'(G,Q/Z) to the subgroup of Q/Z generated by 1/n, where n = #G (it i here that we use the
unramified hypothesis on L/K).

We define invy, /i to be the composite

H?*(G,L*) ~ H*(G,Z) ~ H'(G,Q/Z) — Q/Z.

One checks that all the maps above are compatible with Inf : H?(L/K) — H?*(E/K) for any tower of
fields £ O L D K with E, L unramified over K, i.e. that invy,x = invg, g oInf, so the maps invy x form
an inverse system allowing us to define invg : H?(K""/K) — Q/Z. This must be an isomorphism since its
image contains 1/n for all n (as there is a unique unramified degree n extsnsion of K for every n). ]

The whole point of this is to be able to make the following definition and conclude the next two propo-
sitions:

Definition 2.7. The fundamental class ur,/x € H?(L/K) is the element corresponding to 1/[L : K| in Q/Z
under invy k.

Proposition 2.8. Let E D L D K be a tower of fields. Then Inf(up,x) = [E : Llug/x and Res(ug/x) =
uE/L'

Along with Hilbert’s Theorem 90, this allows one to conclude:

Proposition 2.9. Let L/K be a finite extension of local fields with G = Gal(L/K). For any subgroup
H C G we have H*(H,L*) =0 and H*(H,L*) is cyclic of order #:H, generated by Res(ur k).

One can then apply Tate’s Theorem:

Theorem 2.10. Let G be a finite group and C a G-module. Suppose that for every subgroup H of G that
HY(H,C) =0 and H?(H,C) is cyclic of order #H. Then for all r there is an isomorphism

HY(G,Z) = HY2(G, C).
Corollary 2.11. There is an isomorphism
G* = H;*(G,Z) ~ HY(G, LX) = K*/Nm(L*).

Proof. Set r = —2 above. We must show that G* = H*(G,Z) and H%(G,L*) = K*/Nm(L*). Recall
that the Tate cohomology groups are defined as:

H"(G, M) r>0
MG /Nmg(M) =0
ker Nmg /IcM r= -1
H_ , (G M) r<-1

HL(G,M) =

where I is the augmentation ideal, that is, the kernel of Z[G] ol g (It is a free Z-module generated

by (g9 —1) for g € G) and Nmg(m) = >° 5 gm. Thus, HY(G,L*) = K*/Nmg(L*) = K*/Nm(L*) on
remembering that L is a G-module under multiplication, so Nmg = Nmy, /. Now H;Q(G, Z)=H,(G,Z).
Using the exact sequence

0—Icg—Z|G]-Z—0



we obtain
0=H(G,Z|G]) — H1(G,Z) — (Ig)¢ — Z|G)c¢ — Zg — 0,

where we have used the fact that Z[G] is projective as a Z[G]-module (since it is free). Since Mg := M/{gm—
m} = M/IcM is the largest quotient on which G acts trivially, we see that Zg = Z, Z[G]¢ = Z[G]/IcZ]G]
and (Ig)a = Ig/1%, and since I — Z[G] is the inclusion map, the map I /I3 — Z[G]/I¢Z[G] is the zero
map. Hence we have an isomorphism H; (G, Z) ~ Ig/I%.

Now consider the map G — I/I% defined by g — (g—1)+1%. Since g¢' —1 = g—1+¢ —1 mod I3 this is
a homomorphism, and since I/I% is commutative, it factors through G®P. Define a homomorphism I — G
by g — 1+ g (free Z-module!). Again, (9 —1)(¢’ —1) =99 —1+g—1+¢g —1mapstogg -¢g 1 gt =1
so this map factors through I/ Ié and is obviously inverse to the map in the other direction. Thus we have
an isomorphism Hy(G,Z) ~ Ig/I% ~ G®P. [ ]

3 Global Class Field Theory: Ideles

Let K be a global field and for any valuation v of K let K, denote the completion of K with respect to |- |,
and 0, = {z € K, : |z|, <1} the ring of integers. We will denote by p,, the prime ideal of O corresponding
to v when v is finite, or its expansion under the map O — O,,.

Definition 3.1. The ideles I are the topological group with underlying set

Ik ={(ay) € HKUX ay, € OF for almost all v}

under component-wise multiplication with a base of opens given by the sets [[ U, with U, C K open and
U, = OF for almost all v. In particular, the sets

U(S,e) :={(ay) i |lay — 1| <€ vES, |ayly =1v ¢S}
form a base of opens of the identity.

We have an injection K* — Ik : a — (a,a,a,---) and the image is discrete: indeed, if e < 1 and S is
any finite set containing the infinite places, the set U(S,¢€) is a nbd. of the identity with U(S,e) N K* =
{ae K*:la—1l, <€ veES, |al, =1, v & S}, which only contains a = 1 since by the product formula

[Ilal, = 1.
Definition 3.2. The idele class group is the quotient Cx = Ix/K*.
Now let L/K be a finite extension.

Definition 3.3. Define the map Nm : I, — Ix by Nm((bw)) = ([[,, Nmz, /k, bw). For o € L we have
Nmy g o= Hw‘v Nmy, /x,(a) so the map Nm restricts to Nmy /x on the image of L*.

Theorem 3.4. There exists a unique continuous homomorphism ¢r : Ix — Gal(K/K) with the following
properties:

1. (Compatibility) Let L/K be a finite extension. If ¢, : K, — Gal(L,/K,) ~ D(v) C Gal(L/K) is the
local Artin map then the diagram

Ky~ Gal(Ly /K,)

| !

I — " Gal(L/K)

commutes.



2. (Artin Reciprocity) We have ¢ (K*) =1 and for every finite abelian extension L/K an isomorphism
ér/k I /(K* -Nm(I)) = Gal(L/K).

Observe that Cx/Nm(Cp) ~ I /(K> - Nm(I.)) so item 2 can be rephrased as an isomorphism ¢ :
Cx/Nm(Cr) = Gal(L/K).

Theorem 3.5. Let N C Cg be an open subgroup of finite index. Then there exists a unique abelian extension
L/K with Nm(Cpr) = N.

Remark 3.6. When K is a number field, every subgroup of I of finite index is open.

Proof sketch of Theorem 3.4. Let L/K be a finite abelian extension. Then when L,,/K, is unramified and
a, € 0, we have ¢,(a,) = 1 (a little tricky to show this) so the product ¢,k ((av)) := [], ¢v(a,) makes
sense. Observe that requiring ¢,k to be a continuous homomorphism with the compatibility condition in
item 1 forces this definition on us. The properties of the local Artin maps show that when L’ O L we have
ér = ¢r/|,, so the maps ¢,/ are compatible with the inverse system L, /L of all finite abelian extensions
of K, and we obtain ¢ is the inverse limit of the ¢ k. The properties of the local Artin maps show that
the diagram

b1
I — 5 Gal(L/K")

g

¢L K
I — Gal(L/K)

commutes for any K > L D K’ D K, so taking K’ = L shows that ker ¢r/x O Nm(Ir), which contains an
open subgroup of Ik, so ¢k is continuous. This handles existence and continuity of ¢ . Proving item 2 is
harder. |

Definition 3.7. A modulus m is a formal product of places m = Hp p™®) where for p infinite complex we
set m(p) = 0 and for p infinite real we stipulate m(p) < 1, and for all but finitely many p we have m(p) = 0.

Definition 3.8. For any modulus m let

R.o p real
1+ p™®  p finite’

Win(p) = {
and observe that W,,(p) is a nbd. of 1 and an open subgroup of K. We put

W= [ K xJ[Wn@ = J] O
ptm ptm

plm
p infinite p finite

It is an open subgroup of

L, = [ [] &} x [[Wm(p) | N1

ptm plm

We put Ky, 1 := K> N1y; it is the subgroup of all a € K with ord,(a — 1) > m(p) for p finite and a > 0
in every real embedding K — K, i.e. totally positive.

Proposition 3.9. The inclusion L,, — I gives an isomorphism L, /K., 1 ~1/K*.

Proof. By the definition of K, 1, it is the kernel of I,, — I/K*, thus there is an injection I, /K, 1 <— I/K*.
Surjectivity follows from the weak approximation theorem. |



4 Global Class Field Theory: Ideal-theoretic

In this section we derive the ideal-theoretic formulation of class field theory from the previous section.
Throughout we fix the base field K.

Definition 4.1. Let m be a modulus. Then I™ is the group of fractional ideals of Ok relatively prime to
m; i.e the free abelian group on the (finite) primes of Ox not dividing m. Observe that K, 1 — I™ via
a — aOg. We define the ray class group Cy, := I /Ky, 1.

Proposition 4.2. The natural map 1, — I'"™ — C,, defined by

(a,) — H pordr(ar)

p finite

gives an isomorphism
L./ (Km1- W) =~ Chy.

Proof. This is just the kernel-cokernel sequence from

00— K1 I I —— coker f ——=(

|

0 ker g I m 0

where one notes that ker g = W,,. |

Theorem 4.3. Let G be a finite abelian group with the discrete topology and ¢ : I — G a continuous
homomorphism such that ¢(K*) = 1. Then there exists a modulus m such that ¢ factors through C,, and
thus defines a map I"™ — G killing K, 1.

Proof. By propositions 3.9,4.2, it will suffice to show that ¢ kills W,,, for some m. Since ¢ is continuous,
the kernel is an open subgroup, and so contains a basic nbd. of the identity. The components of this nbd.
at the infinite places must be the connected component of the identity of R* or C*, so by the definition of
the W,,, and the fact that the sets U(S, ¢) form a system of nbds. of the identity, we see that ¢ kills W, for
some m. ]

Theorem 4.4. Let L/K be a finite abelian extension. Then there exists a modulus m such that ¢ induces
an isomorphism

I /(K - Nm(I7')) = Gal(L/K).

Proof. We have a map a +— ¢K(a)|L from I — Gal(L/K) which by Theorem 4.3 induces a map I™ —
Gal(L/K) for some m that kills K, 1. The entire kernel of this map, by Theorem 3.4 (2), must be the image
of the coset K* - Nm(Iy) under the map

~

Ix = Ix/K* = 1/Kpn1 — Ig/Kmna,
where I,, — I is given by (ay) — [1, aue 2o ). It is not hard to see that this image is Ky, 1 -
Nm(Ip). n

In a similar spirit, the next theorem follows from Theorem 3.5:

Theorem 4.5. For any subgroup H C I} that contains K, 1 there exists a unique abelian extension L/K
with H = Ky 1 - Nm(I7). Equivalently, for every subgroup H' of C.y,, there exists an abelian extension L/K
such that ¢ induces (as above) an isomorphism Cp,/H = Gal(L/K).



Remark 4.6. The minimal modulus m for which ¢x induces an isomorphism I/(K,1 - Nm(I7")) =
Gal(L/K) is the conductor of L/K. It is divisible by precisely those primes of K ramifying in L.

Remark 4.7. From the definition of ¢x((ay)) as the product [[ ¢y (ay) of all the local Artin maps, it is
immediate that the induced map I} — Gal(L/K) takes a prime p to the Frobenius element Frob, € D(p) C
Gal(L/K), and we see that this description determines the map completely.

Ezample 4.8. Let K = Q and L = Q((,). Then Gal(L/K) ~ (Z/mZ)*, with a € (Z/mZ)* acting on (,, by
Cm +— (2. If p is any prime of Q not ramifying in L (equiv. not dividing moo) then Frob, € (Z/mZ)* must
satisfy Frob,(¢,,) = ¢k, mod p for a prime p above p. But Frob,((,) = ¢, for some r and if p|({, — Gn),

then
pllim T @—¢)=m,
0<a<m
which is not the case. Hence Frob, = p € (Z/mZ)*, and it follows that the Artin map I§> — (Z/mZ)* is
given by (a/b)Z  [a][b] 1, and hence that the kernel is

{a/beQ:(a,m)=(b,m)=1, a=bmodm, a/b>0}=Q,,1,
so L = Q((,y,) is the ray class field Cyo0-

Corollary 4.9 (Kronecker-Weber Theorem). Let L be an abelian extension of Q. Then L C Q((n) for
some m.

Proof. By Theorem 4.4, there exists a modulus m with the artin map /gy — Gal(L/K) definining an
isomorphism 1¢y/(Qum,1 - Nm(I7")) ~ Gal(L/Q). We may as well assume that m = moo, so by the above
example we have an isomorphism I{Q”/Qm,l ~ Gal(Q(¢n)/Q) := G. Letting H be the subgroup of I{Q”/Qm,l
corresponding to Nm(Q,,1 - I7*), we see that H is a normal subgroup of G and G/H ~ Gal(L/Q). Now
using the Galois correspondence and the uniqueness statement of Theorem 4.5, we see that L is a subfield
of Q((n) (namely the fixed field of H). |

5 Quadratic Reciprocity
We give a proof of Quadratic Reciprocity using the theory sketched above.

Theorem 5.1. Let p,q be distinct odd primes and define (g) by dq(yp)/Q(@)(V/pP) = (%’) Vp- Then

(-

Proof. Let p* = (—1)%]97 so the unique quadratic subfield of K = Q((,) is Q(y/p*). There is a unique
subgroup H C G := Gal(K/Q) ~ (Z/pZ)* if index 2, namely the squares modulo p, so Gal(Q(1/p*)/Q) =
G/H. The artin reciprocity map ¢x;q : Ig = {a/b € Q* : a/b > 0, ord,(a/b) = 0} — G is given by
q + Froby, which acts as ¢, = (I mod 1 — (,, and since (p,q) = 1, this implies that Froby(¢,) = (. Hence,
the artin map ¢ : Igy — (Z/pZ)* is a/b+ [a][b]~'. On one hand, Frob, is trivial on Q(v/p¥) iff [¢] € H, i.c.
iff (%) = 1. On the other hand, Frob, |Q(\/17) is trivial iff the residual degree of Z[\/p*]/Q over F,, is 1, for
any @ above 1. This is the case iff ¢ splits in Q(\/p¥), iff 2% — p* splits in F,[z], that is, iff p* is a square
mod ¢q. To conclude, WEi 1have shown that (%) =1 iff (%) = 1 or equivalently (%) (%) = 1. We need only
show that (_Tl) = (=1)*z", but this is classical. |



6 Artin L-series

Let L/K be a galois extension of number fields and put G = Gal(L/K). Let (p,V) be a (complex) finite
dimensional representation of G. For any prime p of K and p above p in L, the group D,/I, acts on
Vi ={v eV :ov=nuw o€}, where D, C G is the decomposition group at p and I, is the inertia
group at p. Thus, we obtain a representation (p,,VI*) of D,/I, ~ Gal(l/k), where [,k are the residue
fields k = K/p and L = L/p. As usual, Frob, is an element of D, whose image under the surjective map
D, — Gal(l/k) is a generator. As we know, the conjugacy class Frob, := {Frob,, p N K = p} C G depends
only on p, and moreover, for any p1, p2 above p, the groups D, , D, and I, I, are simultaneously conjugate.
Thus, the characteristic polynomial
det(1 — tp(Froby))

of the endomorphism p(Froby) acting on V! depends only on p.

Definition 6.1. Let L/K be a Galois extension as above with Gal(L/K) = G, and let (p,V) be a finite
dimensional representation of G. Then the Artin L-series is

s -1
L(L/K,p,s):= ][] det(1—Ngjq(p)™"- p(Froby)) ",
pESpec Ok
and where for each p € Spec O we make an arbitrary choice of p € Spec Oy, lying over p.
Proposition 6.2. The Artin L-series L(L/K, p, s) converges absolutely and uniformly for R(s) > 1.

sketch of proof. The endomorphism p(Frob,) has finite order, so the roots of the characteristic polynomial
are roots of unity; i.e. we have

d
det (1 = Nie/q(p)™* - p(Froby)) = [T(1 = eiNiejq(0) ),

i=1
with d = dim V’» < n = dim V. Thus, we wish to investigate the convergence of
PP
p i=1d ¢
where ¢ = Ng/q(p). Convergence for $(s) > 1 is nor obvious. [ |

Example 6.3. If p is the trivial representation, then we have

LL/Kps)= [ (1= Nia®) ™) = Cxls),

pESpec Ok

which evidently does not depend on L.

Ezample 6.4. Suppose now that G is abelian, and let p be an irreducible (hence 1-dimensional) representation
of G. Then we have an isomorphism Cg/Nm(Cr) = G by CFT, so we can interpret p as a character of
Cxk that is trivial on Nm(C},), and is hence continuous. Or, using the ideal-theoretic version of CFT, there
is a modulus m and a surjective homomorphism I} — G that is trivial on K, 1, so we may think of p as a
(continuous) character of the ray class group I7*/K,, 1. In either case, we recover the Artin L-series recovers
a generalized Dirichlet series associated to a Hecke character.

Definition 6.5. A Hecke character is a continuous homomorphism y : Ix — C* that is trivial on K*.
Equivalently, it is a continuous character of the idele class group Cg.

Proposition 6.6. For any Hecke character x, there exists a modulus m such that x induces a character
X:Cp— C*



Indeed, referring to Prop. 4.2, it is enough to show that x kills some W,,. But x is continuous, so the

kernel contains an open set, which must contain some W,,. Alternately, the image of Hp)[oo O, is a compact

totally disconnected subgroup of C*, hence finite, and this implies that the kernel contains W,,, for some m.
We now summarize some basic properties of Artin L-series.

Proposition 6.7.

Let E D L D K be a tower of fields, with E/L and L/ K Galois. Any representation p of G(L/K) can be pulled
back to a representation, also deonote p, of G(E/K) via the surjective homomorphism G(E/K) — G(L/K).
Then

L(B/K, p,s) = L(L/K, p,5).

If p,p’ are two representations of G(L/K), then
LL/K.p@®p',s)=L(L/K,p,s)L(L/K,p,s).

If M is an intermediate field L > M D K and p is a representation of H = G(L/M) and we denote the
induced representation of G = G(L/K) by Ind$, p, then

L(L/M,p,s)=L(L/K,Ind$ p,s).

sketch of proof. Observe that under the surjective map D, /I, — D, /I, for p a prime of E over p € Spec Oy,
the frobenius Frob, maps to Frob,. Now (1) follows from the definitions. As for (2), we remark that the

charpoly of Frob, acting on VI @ V' is the product of the characteristic polynomials of the same operator

on each of V%» and V'* (think block matrices). The last item is a bit tricky, and we refer to Neukirch or
Lang. |

Theorem 6.8. For an infinite prime p put

L Tr p(1)
Lp(L/K7p7s):{ c(s) p real

Lr(s)" Lr(s+1)"  p real’
where
Le(s) = 2(2n)7°T(s),  Lr(s) =7 %/*T(s/2),

and for real p, we notice that Frob, is of order 2, so we get an eigenspace decomposition V.=Vt oV,
and we put n™ = dim V7T and n™ = dim V. Set Lo(L/K,p,s) = 100 £o(L/K, p,s). Then there esists a
certain constant ¢(L/K, p), such that the function

A(L/K, p,s) = c(L/ K, p)**Los(L/ K, p, s)L(L/K, p, 5)
meromorphically continues to all of C via the functional equation
ML/K,p,s) = W(p)A(L/K, 5,1 — 5)
where p is the the composition of p with complex conjugation and W (p) € C* has absolute value 1.

We do not prove this, but remark that the proof first establishes the result in the case that p is one-
dimensional using the correspondence with Hecke characters alluded to above (there is a good theory in this
case), and then uses the properties of the L-functions above and the Brauer Theorem (every character of
a finite group G is a Z-linear combination of one-dimensional characters induced from subgroups of G) to
handle the general case.



7 Chebotarev Density Theorem

Proposition 7.1. Let L/K be a galois extension of number fields. Then

Cu(s) = Cre(s) [] L(L/K, x, )X,
x#1

where the product ranges over all nontrivial irreducible characters of Gal(L/K).

Proof. This follows from property 3 of the Artin L-functions, after observing that for a tower of fields
E D L > K with G = Gal(E/K) and H = Gal(E/L), the character of the induced representation Ind% id is
>~y X(1)x; the sum being over all irreducible characters of G. [ |

Corollary 7.2. For nontrivial x, we have L(L/K,x,1) # 0.

Proof. One shows that L(L/K, x, s) does not have a pole at s = 1 when x # 1, and then that both (i and
(r, have simple poles at s = 1. [ |

Proposition 7.3. Let K be a number field, and m a modulus. Let H,, C Iy be a subgroup containing K, 1
(i.e. a subgroup of Cp,) of index hy, = [IP : Hp]. Then for any ideal class k in I} /H,,, the set of prime
ideals in Kk has dirichlet density 1/h,,.

Proof. Let L be the ray class field of conductor m. Then the Artin L function L(L/K, x, s) differs from the

Hecke L-series 1

L(s,x) == 1;[ 1— X(p)NK/Q(p)_S

(where x is a character of I} via the surjection I} — G) by finitely many factors that are nonzero at 1, so
L(1,x) # 0. One uses this and the asymptotic relation

ogL(s)~ 3 3P

REIR . Km,1 PER NK/Q(p)S

with the character orthogonality relations to complete the proof; it is a direct generalization of the proof of
Dirichlet’s Theorem on primes in arithmetic progression. |

Observe that as a corollary, we obtain Dirichlet’s Theorem by letting L/ K = Q({ /() so G is (Z/mZ)* ~
I{Q”“/Kmooﬂ and h,, = [L: K] = ¢(m).

Theorem 7.4. Let L/K be a galois extension with galois group G. For each conjugacy class ¢ of G, let S(s)
denote the set of unramified primes p € Og whose image under the map Ix — G given by p — Frob, is c
(recall that Frob,, is the conjugacy class of all Frob, with p € Spec Oy, lying over p). Then S(c) has Dirichlet

density #c/#G.
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