1 Group Cohomology

1.1 Definitions

Let G be a group.
Definition 1.2. A G-module A is a $\mathbf{Z}[G]$-module, that is, an abelian group A together with a homomorphism of groups $G \rightarrow$ Aut A. A morphism of G-modules is a morphism as $\mathbf{Z}[G]$-modules.

This is an abelian category since the category of R-modules is, for any commutative ring R. For this reason, the category of G-modules has enough injectives and enough projectives. If $A^{G}=\{a \in A: g a=a\}$ and $A_{G}=A /\{g a-a: g \in G, a \in A\}$ then for any morphism $A \rightarrow B$ we obtain morphisms $A^{G} \rightarrow B^{G}$ and $A_{G} \rightarrow B_{G}$, so $A \rightarrow A^{G}$ and $B \rightarrow B_{G}$ are functors from G-modules to G-modules. The functor $A \rightarrow A^{G}$ is left exact while the functor $A \rightarrow A_{G}$ is right exact.

Definition 1.3. The cohomology group $H^{r}(G, A)$ is the r th right derived functor of $A \rightarrow A^{G}$, and the homology group $H_{r}(G, A)$ is the r th left derived functor of $A \rightarrow A_{G}$.

Remark 1.4. Give \mathbf{Z} the trivial G-action and define $\mathbf{Z}[G] \rightarrow \mathbf{Z}$ by $g \mapsto 1$ for all $g \in G$. Then $A^{G}=\operatorname{Hom}(Z, A)$ and $A_{G}=\mathbf{Z} \otimes_{\mathbf{Z}[G]} A$ so we can identify $H^{r}(G, A)=\operatorname{Ext}^{r}(\mathbf{Z}, A)$ and $H_{r}(G, A)=\operatorname{Tor}_{r}(\mathbf{Z}, A)$.

1.5 Functoriality

The H^{r} and H_{r} are cohomological functors in the sense of Grothendieck, that is for any exact sequence

$$
\begin{equation*}
0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0 \tag{1}
\end{equation*}
$$

one obtains a long exact sequences

$$
0 \rightarrow H^{0}\left(G, A^{\prime}\right) \rightarrow \cdots \rightarrow H^{r}(G, A) \rightarrow H^{r}\left(G, A^{\prime \prime}\right) \xrightarrow{\delta} H^{r+1}\left(G, A^{\prime}\right) \rightarrow \cdots
$$

and

$$
\cdots H_{r}(G, A) \rightarrow H_{r}\left(G, A^{\prime \prime}\right) \stackrel{\delta}{\rightarrow} H_{r-1}\left(G, A^{\prime}\right) \rightarrow \cdots \rightarrow H_{0}\left(G, A^{\prime \prime}\right) \rightarrow 0
$$

that are functorial in the exact sequence (1). Moreover, $H^{0}(G, A)=A^{G}$ and $H_{0}(G, A)=A_{G}$ since the functors $A \rightarrow A^{G}$ and $A \rightarrow A_{G}$ are left exact and right exact respectively.

Now let A (resp. A^{\prime}) be a G (resp. G^{\prime}) module, and suppose we have a homomorphism of groups $\psi: G^{\prime} \rightarrow G$ and a G^{\prime}-modphism $\varphi: A \rightarrow A^{\prime}$. Then we obtain an inclusion $A^{G} \hookrightarrow A^{G^{\prime}}$ and a G^{\prime}-morphism $A^{G^{\prime}} \rightarrow A^{G^{\prime}}$, and hence morphisms

$$
(\psi, \varphi): H^{r}(G, A) \rightarrow H^{r}\left(G^{\prime}, A^{\prime}\right)
$$

for $r \geq 0$.
Similarly, if $\psi: G \rightarrow G^{\prime}$ is a homomorphism of groups, and $\varphi: A \rightarrow A^{\prime}$ is a G-morphism, then we have induced maps $A_{G} \rightarrow A_{G}^{\prime} \rightarrow A_{G^{\prime}}^{\prime}$ and hence morphisms

$$
(\psi, \varphi): H_{r}(G, A) \rightarrow H_{r}\left(G^{\prime}, A^{\prime}\right)
$$

for $r \geq 0$.
If we only consider a morphism $G^{\prime} \rightarrow G$, we obtain induced maps $A_{G^{\prime}} \rightarrow A_{G}$ and $A^{G} \rightarrow A^{G^{\prime}}$ and thus maps $H^{r}(G, A) \rightarrow H^{r}\left(G^{\prime}, A\right)$ and $H_{r}\left(G^{\prime}, A\right) \rightarrow H_{r}(G, A)$.

2 Local Class Field Theory

Theorem 2.1. Let K be a local nonarchimedean field. Then there is a continuous homomorphism

$$
\phi_{K}: K^{\times} \rightarrow \operatorname{Gal}\left(K^{\mathrm{ab}} / K\right)
$$

such that:

1. If L / K is an unramified extension and $\pi \in K$ is any prime element, then $\left.\phi_{K}(\pi)\right|_{L}=\operatorname{Frob}_{L / K}$.
2. For any finite abelian extension L / K, the map $\left.a \mapsto \phi_{K}(a)\right|_{L}$ induces an isomorphism

$$
\phi_{L / K}: K^{\times} / \mathrm{Nm}\left(L^{\times}\right) \xrightarrow{\sim} \operatorname{Gal}(L / K)
$$

Theorem 2.2. A subgroup N of K^{\times}is of the form $\operatorname{Nm}\left(L^{\times}\right)$for some finite abelian extension L / L iff it is of finite index and open. That is, the map $L \mapsto \operatorname{Nm}\left(L^{\times}\right)$is a bijection between the finite abelian extensions of K and the open subgroups of finite index in K^{\times}.

Remark 2.3. If char $K=0$ then every subgroup of finite index is open.
Example 2.4. We consider the specific case $K=\mathbf{Q}_{p}$. The isomorphisms $\mathbf{Q}_{p}^{\times} / \operatorname{Nm}\left(L^{\times}\right) \simeq \operatorname{Gal}\left(L / \mathbf{Q}_{p}\right)$ for L / \mathbf{Q}_{p} abelian give an isomorphism

$$
\lim _{\rightleftarrows} \mathbf{Q}_{p}^{\times} / \operatorname{Nm}\left(L^{\times}\right) \simeq \operatorname{Gal}\left(\mathbf{Q}_{p}^{\mathrm{ab}} / \mathbf{Q}_{p}\right)
$$

The left hand side is the completion of $\mathbf{Q}_{p}^{\times} \simeq \mathbf{Z}_{p}^{\times} \times \mathbf{Z}$ with respect to the norm topology, which is isomorphic to $\mathbf{Z}_{p}^{\times} \times \widehat{\mathbf{Z}}$. Thus $\mathbf{Q}_{p}^{\mathrm{ab}}$ is the compositum of the fixed fields of $\phi\left(\mathbf{Z}_{p}^{\times}\right)$and $\phi\left(\pi^{\widehat{\mathbf{Z}}}\right)$ where $\phi: \mathbf{Q}_{p}^{\times} \rightarrow \operatorname{Gal}\left(\mathbf{Q}_{p}^{\mathrm{ab}} / \mathbf{Q}_{p}\right)$ is the local artin map. But we know that $\left.\phi(p)\right|_{\mathbf{Q}_{p}{ }^{\mathrm{nr}}}=\operatorname{Frob}_{p}$ and that \mathbf{Z}_{p}^{\times}is the kernel of $\mathbf{Q}_{p}^{\times} \xrightarrow{\phi} \operatorname{Gal}\left(\mathbf{Q}_{p}^{\mathrm{nr}} / \mathbf{Q}_{p}\right)$. Thus $\mathbf{Q}_{p}^{\mathrm{nr}}$ is the fixed field of \mathbf{Z}_{p}^{\times}, and in our notes on local field extensions we explicitly describe this field and the action of the galois group $\widehat{\mathbf{Z}}$ on it.

Now let L / \mathbf{Q}_{p} be a finite field extension fixed by $\phi(\widehat{Z})$, i.e. fixed by Frob_{p}. Then as $\phi(p)$ acts trivially on L, we must have $p \in \operatorname{Nm}\left(L^{\times}\right)$(by the reciprocity isomorphism). The only abelian extensions of \mathbf{Q}_{p} that satisfy this requirement are the extensions $L_{n}:=\mathbf{Q}_{p}\left(\zeta_{p^{n}}\right)$ (see local fields notes). Thus, the fixed field of $\langle\phi(p)\rangle$ is $\mathbf{Q}_{p}\left(\zeta_{p}^{\infty}\right)$; it is totally ramified over \mathbf{Q}_{p} with galois group \mathbf{Z}_{p}^{\times}.

We conclude that $\mathbf{Q}_{p}^{\mathrm{ab}}=\mathbf{Q}_{p}\left(\zeta_{p \infty}\right) \cdot \mathbf{Q}_{p}^{\mathrm{nr}}$, where $\mathbf{Q}_{p}^{\mathrm{nr}}={\underset{\mathrm{lim}}{p \nmid n}} \mathbf{Q}_{p}\left(\zeta_{n}\right)$
Example 2.5. We describe the $\operatorname{map} \phi: \mathbf{Q}_{p}^{\times} \rightarrow \operatorname{Gal}\left(\mathbf{Q}_{p}(\zeta) / \mathbf{Q}_{p}\right)$ for a primitive nth root of unity ζ. Let $a=u p^{t} \in \mathbf{Q}_{p}^{\times}$with $u \in \mathbf{Z}_{p}^{\times}$and write $n=m p^{r}$ with $p \nmid m$, so $\mathbf{Q}_{p}\left(\zeta_{n}\right)$ is the compositum $\mathbf{Q}_{p}\left(\zeta_{p^{r}}\right) \cdot \mathbf{Q}_{p}\left(\zeta_{m}\right)$. Then $\phi(a)$ acts on $\mathbf{Q}_{p}\left(\zeta_{m}\right)$ by $\zeta_{m} \mapsto \operatorname{Frob}_{p}^{t}\left(\zeta_{m}\right)=\zeta_{m}^{p}$ and on $\mathbf{Q}_{p}\left(\zeta_{p^{r}}\right)$ by $\zeta_{p^{r}} \mapsto \zeta_{p^{r}}^{\left(u \bmod p^{r}\right)^{-1}}$

We now sketch the construction of the local Artin map ϕ_{K}.
Proposition 2.6. For any local field, there is a canonical isomorphism

$$
\operatorname{inv}_{K}: H^{2}\left(K^{\mathrm{al}} / K\right):=H^{2}\left(\operatorname{Gal}\left(K^{\mathrm{al}} / K\right), K^{\mathrm{al} \times}\right) \simeq \mathbf{Q} / \mathbf{Z}
$$

Proof. Let L / K be an unramified extension of K and set $G=\operatorname{Gal}(L / K)$ and $U_{L}=\mathcal{O}_{L}^{\times}$. From the long exact cohomology sequence of the exact sequence of G-modules

$$
1 \rightarrow U_{L} \rightarrow L^{\times} \xrightarrow{\operatorname{ord}_{L}} \mathbf{Z} \rightarrow 0
$$

we obtain an isomorphism $H^{2}\left(G, L^{\times}\right) \xrightarrow{\sim} H^{2}(G, \mathbf{Z})$, where we have used the fact that $H^{1}\left(G, U_{L}\right)=0$.
Similarly, from

$$
0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Q} \rightarrow \mathbf{Q} / \mathbf{Z} \rightarrow 0
$$

we obtain an isomorphism $H^{1}(G, \mathbf{Q} / \mathbf{Z}) \xrightarrow{\sim} H^{2}(G, \mathbf{Z})$, where we have used that $H^{r}(G, \mathbf{Q})=0$ for all $r \geq 1$ (because multiplication by m on \mathbf{Q}, and hence on $H^{r}(G, \mathbf{Q})$, is an isomorphism, but since G is finite, $H^{r}(G, \mathbf{Q})$ is torsion).

Finally, the map $H^{1}(G, \mathbf{Q} / \mathbf{Z})=\operatorname{Hom}(G, \mathbf{Q} / \mathbf{Z}) \rightarrow \mathbf{Q} / \mathbf{Z}$ given by $f \mapsto f\left(\operatorname{Frob}_{L / K}\right)$ is an isomorphism from $H^{1}(G, \mathbf{Q} / \mathbf{Z})$ to the subgroup of \mathbf{Q} / \mathbf{Z} generated by $1 / n$, where $n=\# G$ (it i here that we use the unramified hypothesis on $L / K)$.

We define $\operatorname{inv}_{L / K}$ to be the composite

$$
H^{2}\left(G, L^{\times}\right) \simeq H^{2}(G, \mathbf{Z}) \simeq H^{1}(G, \mathbf{Q} / \mathbf{Z}) \rightarrow \mathbf{Q} / \mathbf{Z}
$$

One checks that all the maps above are compatible with $\operatorname{Inf}: H^{2}(L / K) \rightarrow H^{2}(E / K)$ for any tower of fields $E \supset L \supset K$ with E, L unramified over K, i.e. that $\operatorname{inv}_{L / K}=\operatorname{inv}_{E / K} \circ \operatorname{Inf}$, so the maps $\operatorname{inv}_{L / K}$ form an inverse system allowing us to define $\operatorname{inv}_{K}: H^{2}\left(K^{\mathrm{un}} / K\right) \rightarrow \mathbf{Q} / \mathbf{Z}$. This must be an isomorphism since its image contains $1 / n$ for all n (as there is a unique unramified degree n extsnsion of K for every n).

The whole point of this is to be able to make the following definition and conclude the next two propositions:

Definition 2.7. The fundamental class $u_{L / K} \in H^{2}(L / K)$ is the element corresponding to $1 /[L: K]$ in \mathbf{Q} / \mathbf{Z} under $\operatorname{inv}_{L / K}$.

Proposition 2.8. Let $E \supset L \supset K$ be a tower of fields. Then $\operatorname{Inf}\left(u_{L / K}\right)=[E: L] u_{E / K}$ and $\operatorname{Res}\left(u_{E / K}\right)=$ $u_{E / L}$.

Along with Hilbert's Theorem 90, this allows one to conclude:
Proposition 2.9. Let L / K be a finite extension of local fields with $G=\operatorname{Gal}(L / K)$. For any subgroup $H \subset G$ we have $H^{1}\left(H, L^{\times}\right)=0$ and $H^{2}\left(H, L^{\times}\right)$is cyclic of order $\# H$, generated by $\operatorname{Res}\left(u_{L / K}\right)$.

One can then apply Tate's Theorem:
Theorem 2.10. Let G be a finite group and C a G-module. Suppose that for every subgroup H of G that $H^{1}(H, C)=0$ and $H^{2}(H, C)$ is cyclic of order $\# H$. Then for all r there is an isomorphism

$$
H_{T}^{r}(G, \mathbf{Z}) \xrightarrow{\sim} H_{T}^{r+2}(G, C) .
$$

Corollary 2.11. There is an isomorphism

$$
G^{\mathrm{ab}}=H_{T}^{-2}(G, \mathbf{Z}) \simeq H_{T}^{0}\left(G, L^{\times}\right)=K^{\times} / \operatorname{Nm}\left(L^{\times}\right)
$$

Proof. Set $r=-2$ above. We must show that $G^{\text {ab }}=H_{T}^{-2}(G, \mathbf{Z})$ and $H_{T}^{0}\left(G, L^{\times}\right)=K^{\times} / \mathrm{Nm}\left(L^{\times}\right)$. Recall that the Tate cohomology groups are defined as:

$$
H_{T}^{r}(G, M)= \begin{cases}H^{r}(G, M) & r>0 \\ M^{G} / \operatorname{Nm}_{G}(M) & r=0 \\ \operatorname{ker}_{N_{G}} / I_{G} M & r=-1 \\ H_{-r-1}(G, M) & r<-1\end{cases}
$$

where I_{G} is the augmentation ideal, that is, the kernel of $\mathbf{Z}[G] \xrightarrow{g \mapsto 1} \mathbf{Z}$ (It is a free \mathbf{Z}-module generated by $(g-1)$ for $g \in G)$ and $\operatorname{Nm}_{G}(m)=\sum_{g \in G} g m$. Thus, $H_{T}^{0}\left(G, L^{\times}\right)=K^{\times} / \operatorname{Nm}_{G}\left(L^{\times}\right)=K^{\times} / \operatorname{Nm}\left(L^{\times}\right)$on remembering that L^{\times}is a G-module under multiplication, so $\mathrm{Nm}_{G}=\operatorname{Nm}_{L / K}$. Now $H_{T}^{-2}(G, \mathbf{Z})=H_{1}(G, \mathbf{Z})$. Using the exact sequence

$$
0 \rightarrow I_{G} \rightarrow \mathbf{Z}[G] \rightarrow \mathbf{Z} \rightarrow 0
$$

we obtain

$$
0=H_{1}(G, \mathbf{Z}[G]) \rightarrow H_{1}(G, \mathbf{Z}) \rightarrow\left(I_{G}\right)_{G} \rightarrow \mathbf{Z}[G]_{G} \rightarrow \mathbf{Z}_{G} \rightarrow 0
$$

where we have used the fact that $\mathbf{Z}[G]$ is projective as a $\mathbf{Z}[G]$-module (since it is free). Since $M_{G}:=M /\{g m-$ $m\}=M / I_{G} M$ is the largest quotient on which G acts trivially, we see that $\mathbf{Z}_{G}=\mathbf{Z}, \mathbf{Z}[G]_{G}=\mathbf{Z}[G] / I_{G} \mathbf{Z}[G]$ and $\left(I_{G}\right)_{G}=I_{G} / I_{G}^{2}$, and since $I_{G} \rightarrow \mathbf{Z}[G]$ is the inclusion map, the map $I_{G} / I_{G}^{2} \rightarrow \mathbf{Z}[G] / I_{G} \mathbf{Z}[G]$ is the zero map. Hence we have an isomorphism $H_{1}(G, \mathbf{Z}) \simeq I_{G} / I_{G}^{2}$.

Now consider the map $G \rightarrow I_{G} / I_{G}^{2}$ defined by $g \mapsto(g-1)+I_{G}^{2}$. Since $g g^{\prime}-1 \equiv g-1+g^{\prime}-1 \bmod I_{G}^{2}$ this is a homomorphism, and since I_{G} / I_{G}^{2} is commutative, it factors through G^{ab}. Define a homomorphism $I_{G} \rightarrow G$ by $g-1 \mapsto g$ (free Z-module!). Again, $(g-1)\left(g^{\prime}-1\right)=g g^{\prime}-1+g-1+g^{\prime}-1$ maps to $g g^{\prime} \cdot g^{\prime-1} \cdot g^{-1}=1$ so this map factors through I_{G} / I_{G}^{2} and is obviously inverse to the map in the other direction. Thus we have an isomorphism $H_{1}(G, \mathbf{Z}) \simeq I_{G} / I_{G}^{2} \simeq G^{\mathrm{ab}}$.

3 Global Class Field Theory: Ideles

Let K be a global field and for any valuation v of K let K_{v} denote the completion of K with respect to $|\cdot|_{v}$ and $\mathcal{O}_{v}=\left\{x \in K_{v}:|x|_{v} \leq 1\right\}$ the ring of integers. We will denote by p_{v} the prime ideal of \mathcal{O}_{K} corresponding to v when v is finite, or its expansion under the map $\mathcal{O}_{K} \hookrightarrow \mathcal{O}_{v}$.

Definition 3.1. The ideles \mathbf{I}_{K} are the topological group with underlying set

$$
\mathbf{I}_{K}=\left\{\left(a_{v}\right) \in \prod_{v} K_{v}^{\times}: a_{v} \in \mathcal{O}_{v}^{\times} \text {for almost all } v\right\}
$$

under component-wise multiplication with a base of opens given by the sets $\prod U_{v}$ with $U_{v} \subseteq K_{v}^{\times}$open and $U_{v}=\mathcal{O}_{v}^{\times}$for almost all v. In particular, the sets

$$
U(S, \epsilon):=\left\{\left(a_{v}\right):\left|a_{v}-1\right|<\epsilon \quad v \in S,\left|a_{v}\right|_{v}=1 v \notin S\right\}
$$

form a base of opens of the identity.
We have an injection $K^{\times} \hookrightarrow \mathbf{I}_{K}: a \mapsto(a, a, a, \cdots)$ and the image is discrete: indeed, if $\epsilon<1$ and S is any finite set containing the infinite places, the set $U(S, \epsilon)$ is a nbd. of the identity with $U(S, \epsilon) \cap K^{\times}=$ $\left\{a \in K^{\times}:|a-1|_{v}<\epsilon, v \in S,|a|_{v}=1, v \notin S\right\}$, which only contains $a=1$ since by the product formula $\prod|a|_{v}=1$.

Definition 3.2. The idele class group is the quotient $\mathbf{C}_{K}=\mathbf{I}_{K} / K^{\times}$.
Now let L / K be a finite extension.
Definition 3.3. Define the map $\mathrm{Nm}: \mathbf{I}_{L} \rightarrow \mathbf{I}_{K}$ by $\operatorname{Nm}\left(\left(b_{w}\right)\right)=\left(\prod_{w \mid v} \mathrm{Nm}_{L_{w} / K_{v}} b_{w}\right)$. For $\alpha \in L$ we have $\mathrm{Nm}_{L / K} \alpha=\prod_{w \mid v} \mathrm{Nm}_{L_{w} / K_{v}}(\alpha)$ so the map Nm restricts to $\mathrm{Nm}_{L / K}$ on the image of L^{\times}.

Theorem 3.4. There exists a unique continuous homomorphism $\phi_{K}: \mathbf{I}_{K} \rightarrow \operatorname{Gal}\left(K^{a b} / K\right)$ with the following properties:

1. (Compatibility) Let L / K be a finite extension. If $\phi_{v}: K_{v} \rightarrow \operatorname{Gal}\left(L_{v} / K_{v}\right) \simeq D(v) \subseteq \operatorname{Gal}(L / K)$ is the local Artin map then the diagram

commutes.
2. (Artin Reciprocity) We have $\phi_{K}\left(K^{\times}\right)=1$ and for every finite abelian extension L / K an isomorphism

$$
\phi_{L / K}: \mathbf{I}_{K} /\left(K^{\times} \cdot \mathrm{Nm}\left(\mathbf{I}_{L}\right)\right) \xrightarrow{\sim} \operatorname{Gal}(L / K) .
$$

Observe that $\mathbf{C}_{K} / \operatorname{Nm}\left(\mathbf{C}_{L}\right) \simeq \mathbf{I}_{K} /\left(K^{\times} \cdot \operatorname{Nm}\left(\mathbf{I}_{L}\right)\right)$ so item 2 can be rephrased as an isomorphism ϕ_{K} : $\mathbf{C}_{K} / \operatorname{Nm}\left(\mathbf{C}_{L}\right) \xrightarrow{\sim} \operatorname{Gal}(L / K)$.

Theorem 3.5. Let $N \subseteq \mathbf{C}_{K}$ be an open subgroup of finite index. Then there exists a unique abelian extension L / K with $\operatorname{Nm}\left(\mathbf{C}_{L}\right)=N$.

Remark 3.6. When K is a number field, every subgroup of \mathbf{I}_{K} of finite index is open.
Proof sketch of Theorem 3.4. Let L / K be a finite abelian extension. Then when L_{w} / K_{v} is unramified and $a_{v} \in \mathcal{O}_{v}^{\times}$, we have $\phi_{v}\left(a_{v}\right)=1$ (a little tricky to show this) so the product $\phi_{L / K}\left(\left(a_{v}\right)\right):=\prod_{v} \phi_{v}\left(a_{v}\right)$ makes sense. Observe that requiring $\phi_{L / K}$ to be a continuous homomorphism with the compatibility condition in item 1 forces this definition on us. The properties of the local Artin maps show that when $L^{\prime} \supseteq L$ we have $\phi_{L}=\left.\phi_{L^{\prime}}\right|_{L}$, so the maps $\phi_{L / K}$ are compatible with the inverse system L_{α} / L of all finite abelian extensions of K, and we obtain ϕ_{K} is the inverse limit of the $\phi_{L / K}$. The properties of the local Artin maps show that the diagram

commutes for any $K^{a b} \supset L \supset K^{\prime} \supset K$, so taking $K^{\prime}=L$ shows that $\operatorname{ker} \phi_{L / K} \supset \operatorname{Nm}\left(\mathbf{I}_{L}\right)$, which contains an open subgroup of \mathbf{I}_{K}, so ϕ_{K} is continuous. This handles existence and continuity of ϕ_{K}. Proving item 2 is harder.

Definition 3.7. A modulus m is a formal product of places $m=\prod_{p} p^{m(p)}$ where for p infinite complex we set $m(p)=0$ and for p infinite real we stipulate $m(p) \leq 1$, and for all but finitely many p we have $m(p)=0$.

Definition 3.8. For any modulus m let

$$
W_{m}(p)= \begin{cases}\mathbf{R}_{>0} & p \text { real } \\ 1+p^{m(p)} & p \text { finite }\end{cases}
$$

and observe that $W_{m}(p)$ is a nbd. of 1 and an open subgroup of K_{p}^{\times}. We put

$$
W_{m}=\prod_{\substack{p \nmid m \\ p \text { infinite }}} K_{p}^{\times} \times \prod_{p \mid m} W_{m}(p) \times \prod_{\substack{p \nmid m \\ p \text { finite }}} \mathcal{O}_{p}^{\times}
$$

It is an open subgroup of

$$
\mathbf{I}_{m}:=\left(\prod_{p \nmid m} K_{p}^{\times} \times \prod_{p \mid m} W_{m}(p)\right) \cap \mathbf{I} .
$$

We put $K_{m, 1}:=K^{\times} \cap \mathbf{I}_{m}$; it is the subgroup of all $a \in K^{\times}$with $\operatorname{ord}_{p}(a-1) \geq m(p)$ for p finite and $a>0$ in every real embedding $K \hookrightarrow \bar{K}$, i.e. totally positive.

Proposition 3.9. The inclusion $\mathbf{I}_{m} \hookrightarrow \mathbf{I}$ gives an isomorphism $\mathbf{I}_{m} / K_{m, 1} \simeq \mathbf{I} / K^{\times}$.
Proof. By the definition of $K_{m, 1}$, it is the kernel of $\mathbf{I}_{m} \rightarrow \mathbf{I} / K^{\times}$, thus there is an injection $\mathbf{I}_{m} / K_{m, 1} \hookrightarrow \mathbf{I} / K^{\times}$. Surjectivity follows from the weak approximation theorem.

4 Global Class Field Theory: Ideal-theoretic

In this section we derive the ideal-theoretic formulation of class field theory from the previous section. Throughout we fix the base field K.

Definition 4.1. Let m be a modulus. Then I^{m} is the group of fractional ideals of \mathcal{O}_{K} relatively prime to m; i.e the free abelian group on the (finite) primes of \mathcal{O}_{K} not dividing m. Observe that $K_{m, 1} \hookrightarrow I^{m}$ via $a \mapsto a \mathcal{O}_{K}$. We define the ray class group $C_{m}:=I^{m} / K_{m, 1}$.

Proposition 4.2. The natural map $\mathbf{I}_{m} \rightarrow I^{m} \rightarrow C_{m}$ defined by

$$
\left(a_{p}\right) \mapsto\left[\prod_{p \text { finite }} p^{\operatorname{ord}_{p}\left(a_{p}\right)}\right]
$$

gives an isomorphism

$$
\mathbf{I}_{m} /\left(K_{m, 1} \cdot W_{m}\right) \simeq C_{m}
$$

Proof. This is just the kernel-cokernel sequence from

where one notes that $\operatorname{ker} g=W_{m}$.
Theorem 4.3. Let G be a finite abelian group with the discrete topology and $\phi: \mathbf{I} \rightarrow G$ a continuous homomorphism such that $\phi\left(K^{\times}\right)=1$. Then there exists a modulus m such that ϕ factors through C_{m} and thus defines a map $I^{m} \rightarrow G$ killing $K_{m, 1}$.

Proof. By propositions 3.9,4.2, it will suffice to show that ϕ kills W_{m} for some m. Since ϕ is continuous, the kernel is an open subgroup, and so contains a basic nbd. of the identity. The components of this nbd. at the infinite places must be the connected component of the identity of \mathbf{R}^{\times}or \mathbf{C}^{\times}, so by the definition of the W_{m} and the fact that the sets $U(S, \epsilon)$ form a system of nbds. of the identity, we see that ϕ kills W_{m} for some m.

Theorem 4.4. Let L / K be a finite abelian extension. Then there exists a modulus m such that ϕ_{K} induces an isomorphism

$$
I_{K}^{m} /\left(K_{m, 1} \cdot \mathrm{Nm}\left(I_{L}^{m}\right)\right) \xrightarrow{\sim} \operatorname{Gal}(L / K)
$$

Proof. We have a map $\left.a \mapsto \phi_{K}(a)\right|_{L}$ from $\mathbf{I} \rightarrow \operatorname{Gal}(L / K)$ which by Theorem 4.3 induces a map $I^{m} \rightarrow$ $\operatorname{Gal}(L / K)$ for some m that kills $K_{m, 1}$. The entire kernel of this map, by Theorem $3.4(2)$, must be the image of the coset $K^{\times} \cdot \operatorname{Nm}\left(\mathbf{I}_{L}\right)$ under the map

$$
\mathbf{I}_{K} \rightarrow \mathbf{I}_{K} / K^{\times} \xrightarrow{\sim} \mathbf{I}_{m} / K_{m, 1} \rightarrow I_{K}^{m} / K_{m, 1},
$$

where $\mathbf{I}_{m} \rightarrow I_{K}^{m}$ is given by $\left(a_{v}\right) \mapsto \prod_{v \text { finite }} p_{v}^{\operatorname{ord}_{v}\left(a_{v}\right)}$. It is not hard to see that this image is $K_{m, 1}$. $\mathrm{Nm}\left(I_{L}^{m}\right)$.

In a similar spirit, the next theorem follows from Theorem 3.5:
Theorem 4.5. For any subgroup $H \subset I_{K}^{m}$ that contains $K_{m, 1}$ there exists a unique abelian extension L / K with $H=K_{m, 1} \cdot \mathrm{Nm}\left(I_{L}^{m}\right)$. Equivalently, for every subgroup H^{\prime} of C_{m}, there exists an abelian extension L / K such that ϕ_{K} induces (as above) an isomorphism $C_{m} / H \xrightarrow{\sim} \operatorname{Gal}(L / K)$.

Remark 4.6. The minimal modulus m for which ϕ_{K} induces an isomorphism $I_{K}^{m} /\left(K_{m, 1} \cdot \mathrm{Nm}\left(I_{L}^{m}\right)\right) \xrightarrow{\sim}$ $\operatorname{Gal}(L / K)$ is the conductor of L / K. It is divisible by precisely those primes of K ramifying in L.
Remark 4.7. From the definition of $\phi_{K}\left(\left(a_{v}\right)\right)$ as the product $\prod \phi_{v}\left(a_{v}\right)$ of all the local Artin maps, it is immediate that the induced map $I_{K}^{m} \rightarrow \operatorname{Gal}(L / K)$ takes a prime p to the Frobenius element $\operatorname{Frob}_{p} \in D(p) \subseteq$ $\operatorname{Gal}(L / K)$, and we see that this description determines the map completely.
Example 4.8. Let $K=\mathbf{Q}$ and $L=\mathbf{Q}\left(\zeta_{m}\right)$. Then $\operatorname{Gal}(L / K) \simeq(\mathbf{Z} / m \mathbf{Z})^{\times}$, with $a \in(\mathbf{Z} / m \mathbf{Z})^{\times}$acting on ζ_{m} by $\zeta_{m} \mapsto \zeta_{m}^{a}$. If p is any prime of \mathbf{Q} not ramifying in L (equiv. not dividing $m \infty$) then $\operatorname{Frob}_{p} \in(\mathbf{Z} / m \mathbf{Z})^{\times}$must satisfy $\operatorname{Frob}_{p}\left(\zeta_{m}\right) \equiv \zeta_{m}^{p} \bmod \mathfrak{p}$ for a prime \mathfrak{p} above p. But $\operatorname{Frob}_{p}\left(\zeta_{m}\right)=\zeta_{m}^{r}$ for some r and if $\mathfrak{p} \mid\left(\zeta_{m}^{r}-\zeta_{m}\right)$, then

$$
p \mid \lim _{x \rightarrow 1} \prod_{0<a<m}\left(x-\zeta_{m}^{a}\right)=m
$$

which is not the case. Hence $\operatorname{Frob}_{p}=p \in(\mathbf{Z} / m \mathbf{Z})^{\times}$, and it follows that the Artin map $I_{\mathbf{Q}}^{m \infty} \rightarrow(\mathbf{Z} / m \mathbf{Z})^{\times}$is given by $(a / b) \mathbf{Z} \mapsto[a][b]^{-1}$, and hence that the kernel is

$$
\{a / b \in \mathbf{Q}:(a, m)=(b, m)=1, a \equiv b \bmod m, a / b>0\}=\mathbf{Q}_{m, 1}
$$

so $L=\mathbf{Q}\left(\zeta_{m}\right)$ is the ray class field $C_{m \infty}$.
Corollary 4.9 (Kronecker-Weber Theorem). Let L be an abelian extension of \mathbf{Q}. Then $L \subseteq \mathbf{Q}\left(\zeta_{m}\right)$ for some m.

Proof. By Theorem 4.4, there exists a modulus m with the artin map $I_{\mathbf{Q}}^{m} \rightarrow \operatorname{Gal}(L / K)$ definining an isomorphism $I_{\mathbf{Q}}^{m} /\left(\mathbf{Q}_{m, 1} \cdot \operatorname{Nm}\left(I_{L}^{m}\right)\right) \simeq \operatorname{Gal}(L / \mathbf{Q})$. We may as well assume that $m=m \infty$, so by the above example we have an isomorphism $I_{\mathbf{Q}}^{m} / \mathbf{Q}_{m, 1} \simeq \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{m}\right) / \mathbf{Q}\right):=G$. Letting H be the subgroup of $I_{\mathbf{Q}}^{m} / \mathbf{Q}_{m, 1}$ corresponding to $\operatorname{Nm}\left(\mathbf{Q}_{m, 1} \cdot I_{L}^{m}\right)$, we see that H is a normal subgroup of G and $G / H \simeq \operatorname{Gal}(L / \mathbf{Q})$. Now using the Galois correspondence and the uniqueness statement of Theorem 4.5, we see that L is a subfield of $\mathbf{Q}\left(\zeta_{m}\right)$ (namely the fixed field of H).

5 Quadratic Reciprocity

We give a proof of Quadratic Reciprocity using the theory sketched above.
Theorem 5.1. Let p, q be distinct odd primes and define $\left(\frac{p}{q}\right)$ by $\phi_{\mathbf{Q}(\sqrt{p}) / \mathbf{Q}}(q)(\sqrt{p})=\left(\frac{p}{q}\right) \sqrt{p}$. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

Proof. Let $p^{*}=(-1)^{\frac{p-1}{2}} p$, so the unique quadratic subfield of $K=\mathbf{Q}\left(\zeta_{p}\right)$ is $\mathbf{Q}(\sqrt{p *})$. There is a unique subgroup $H \subset G:=\operatorname{Gal}(K / \mathbf{Q}) \simeq(\mathbf{Z} / p \mathbf{Z})^{\times}$if index 2 , namely the squares modulo p, so $\operatorname{Gal}\left(\mathbf{Q}\left(\sqrt{p^{*}}\right) / \mathbf{Q}\right)=$ G / H. The artin reciprocity map $\phi_{K / \mathbf{Q}}: I_{\mathbf{Q}}^{p}=\left\{a / b \in \mathbf{Q}^{\times}: a / b>0, \operatorname{ord}_{p}(a / b)=0\right\} \rightarrow G$ is given by $q \mapsto \operatorname{Frob}_{q}$, which acts as $\zeta_{p} \mapsto \zeta_{p}^{q} \bmod 1-\zeta_{p}$, and since $(p, q)=1$, this implies that $\operatorname{Frob}_{q}\left(\zeta_{p}\right)=\zeta_{p}^{q}$. Hence, the artin map $\phi: I_{\mathbf{Q}}^{p} \rightarrow(\mathbf{Z} / p \mathbf{Z})^{\times}$is $a / b \mapsto[a][b]^{-1}$. On one hand, Frob_{q} is trivial on $\mathbf{Q}\left(\sqrt{p^{*}}\right)$ iff $[q] \in H$, i.e. iff $\left(\frac{q}{p}\right)=1$. On the other hand, $\left.\operatorname{Frob}_{q}\right|_{\mathbf{Q}\left(\sqrt{p^{*}}\right)}$ is trivial iff the residual degree of $\mathbf{Z}\left[\sqrt{p^{*}}\right] / Q$ over \mathbf{F}_{p} is 1 , for any Q above 1. This is the case iff q splits in $\mathbf{Q}\left(\sqrt{p^{*}}\right)$, iff $x^{2}-p^{*}$ splits in $\mathbf{F}_{q}[x]$, that is, iff p^{*} is a square $\bmod q$. To conclude, we have shown that $\left(\frac{q}{p}\right)=1$ iff $\left(\frac{p^{*}}{q}\right)=1$ or equivalently $\left(\frac{q}{p}\right)\left(\frac{p^{*}}{q}\right)=1$. We need only show that $\left(\frac{-1}{q}\right)=(-1)^{\frac{q-1}{2}}$, but this is classical.

6 Artin L-series

Let L / K be a galois extension of number fields and put $G=\operatorname{Gal}(L / K)$. Let (ρ, V) be a (complex) finite dimensional representation of G. For any prime p of K and \mathfrak{p} above p in L, the group $D_{\mathfrak{p}} / I_{\mathfrak{p}}$ acts on $V^{I_{\mathfrak{p}}}=\left\{v \in V: \sigma v=v, \sigma \in I_{\mathfrak{p}}\right\}$, where $D_{\mathfrak{p}} \subseteq G$ is the decomposition group at \mathfrak{p} and $I_{\mathfrak{p}}$ is the inertia group at \mathfrak{p}. Thus, we obtain a representation $\left(\rho_{\mathfrak{p}}, V^{I_{\mathfrak{p}}}\right)$ of $D_{\mathfrak{p}} / I_{\mathfrak{p}} \simeq \operatorname{Gal}(l / k)$, where l, k are the residue fields $k=K / p$ and $L=L / \mathfrak{p}$. As usual, Frob_{p} is an element of $D_{\mathfrak{p}}$ whose image under the surjective map $D_{\mathfrak{p}} \rightarrow \operatorname{Gal}(l / k)$ is a generator. As we know, the conjugacy class $\operatorname{Frob}_{p}:=\left\{\operatorname{Frob}_{\mathfrak{p}}, \mathfrak{p} \cap K=p\right\} \subseteq G$ depends only on p, and moreover, for any $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ above p, the groups $D_{\mathfrak{p}_{1}}, D_{\mathfrak{p}_{2}}$ and $I_{\mathfrak{p}_{1}}, I_{\mathfrak{p}_{2}}$ are simultaneously conjugate. Thus, the characteristic polynomial

$$
\operatorname{det}\left(1-t \rho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)
$$

of the endomorphism $\rho\left(\right.$ Frob $\left._{\mathfrak{p}}\right)$ acting on $V^{I_{\mathfrak{p}}}$ depends only on p.
Definition 6.1. Let L / K be a Galois extension as above with $\operatorname{Gal}(L / K)=G$, and let (ρ, V) be a finite dimensional representation of G. Then the Artin L-series is

$$
\mathcal{L}(L / K, \rho, s):=\prod_{p \in \operatorname{Spec} \mathcal{O}_{K}} \operatorname{det}\left(1-N_{K / \mathbf{Q}}(p)^{-s} \cdot \rho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)^{-1},
$$

and where for each $p \in \operatorname{Spec} \mathcal{O}_{K}$ we make an arbitrary choice of $\mathfrak{p} \in \operatorname{Spec} \mathcal{O}_{L}$ lying over p.
Proposition 6.2. The Artin L-series $\mathcal{L}(L / K, \rho, s)$ converges absolutely and uniformly for $\Re(s)>1$.
sketch of proof. The endomorphism $\rho\left(\right.$ Frob $\left._{\mathfrak{p}}\right)$ has finite order, so the roots of the characteristic polynomial are roots of unity; i.e. we have

$$
\operatorname{det}\left(1-N_{K / \mathbf{Q}}(p)^{-s} \cdot \rho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)=\prod_{i=1}^{d}\left(1-\epsilon_{i} N_{K / Q}(p)^{-s}\right)
$$

with $d=\operatorname{dim} V^{I_{\mathfrak{p}}}<n=\operatorname{dim} V$. Thus, we wish to investigate the convergence of

$$
\sum_{p} \sum_{i=1^{d}} \frac{\epsilon_{i}}{q^{s}},
$$

where $q=N_{K / \mathbf{Q}}(p)$. Convergence for $\Re(s)>1$ is nor obvious.
Example 6.3. If ρ is the trivial representation, then we have

$$
\mathcal{L}(L / K, \rho, s)=\prod_{p \in \operatorname{Spec} \mathcal{O}_{K}}\left(1-N_{K / \mathbf{Q}}(p)^{-1}\right)^{-1}=\zeta_{K}(s),
$$

which evidently does not depend on L.
Example 6.4. Suppose now that G is abelian, and let ρ be an irreducible (hence 1-dimensional) representation of G. Then we have an isomorphism $\mathbf{C}_{K} / \operatorname{Nm}\left(\mathbf{C}_{L}\right) \xrightarrow{\sim} G$ by CFT, so we can interpret ρ as a character of \mathbf{C}_{K} that is trivial on $\operatorname{Nm}\left(C_{L}\right)$, and is hence continuous. Or, using the ideal-theoretic version of CFT, there is a modulus m and a surjective homomorphism $I_{K}^{m} \rightarrow G$ that is trivial on $K_{m, 1}$, so we may think of ρ as a (continuous) character of the ray class group $I_{K}^{m} / K_{m, 1}$. In either case, we recover the Artin L-series recovers a generalized Dirichlet series associated to a Hecke character.

Definition 6.5. A Hecke character is a continuous homomorphism $\chi: \mathbf{I}_{K} \rightarrow \mathbf{C}^{\times}$that is trivial on K^{\times}. Equivalently, it is a continuous character of the idele class group \mathbf{C}_{K}.

Proposition 6.6. For any Hecke character χ, there exists a modulus m such that χ induces a character $\bar{\chi}: C_{m} \rightarrow \mathbf{C}^{\times}$

Indeed, referring to Prop. 4.2, it is enough to show that χ kills some W_{m}. But χ is continuous, so the kernel contains an open set, which must contain some W_{m}. Alternately, the image of $\prod_{p \nmid \infty} \mathcal{O}_{p}^{\times}$is a compact totally disconnected subgroup of \mathbf{C}^{\times}, hence finite, and this implies that the kernel contains W_{m} for some m.

We now summarize some basic properties of Artin L-series.

Proposition 6.7.

Let $E \supset L \supset K$ be a tower of fields, with E / L and L / K Galois. Any representation ρ of $G(L / K)$ can be pulled back to a representation, also deonote ρ, of $G(E / K)$ via the surjective homomorphism $G(E / K) \rightarrow G(L / K)$. Then

$$
\mathcal{L}(E / K, \rho, s)=\mathcal{L}(L / K, \rho, s) .
$$

If ρ, ρ^{\prime} are two representations of $G(L / K)$, then

$$
\mathcal{L}\left(L / K, \rho \oplus \rho^{\prime}, s\right)=\mathcal{L}(L / K, \rho, s) \mathcal{L}\left(L / K, \rho^{\prime}, s\right) .
$$

If M is an intermediate field $L \supset M \supset K$ and ρ is a representation of $H=G(L / M)$ and we denote the induced representation of $G=G(L / K)$ by $\operatorname{Ind}_{H}^{G} \rho$, then

$$
\mathcal{L}(L / M, \rho, s)=\mathcal{L}\left(L / K, \operatorname{Ind}_{H}^{G} \rho, s\right) .
$$

sketch of proof. Observe that under the surjective map $D_{\mathfrak{p}} / I_{\mathfrak{p}} \rightarrow D_{p} / I_{p}$ for \mathfrak{p} a prime of E over $p \in \operatorname{Spec} \mathcal{O}_{L}$, the frobenius Frob $_{\mathfrak{p}}$ maps to Frob_{p}. Now (1) follows from the definitions. As for (2), we remark that the charpoly of Frob ${ }_{\mathfrak{p}}$ acting on $V^{I_{\mathfrak{p}}} \oplus V^{\prime I_{\mathfrak{p}}}$ is the product of the characteristic polynomials of the same operator on each of $V^{I_{\mathfrak{p}}}$ and $V^{\prime I_{\mathfrak{p}}}$ (think block matrices). The last item is a bit tricky, and we refer to Neukirch or Lang.

Theorem 6.8. For an infinite prime p put

$$
\mathcal{L}_{p}(L / K, \rho, s)=\left\{\begin{array}{ll}
L_{\mathbf{C}}(s)^{\operatorname{Tr} \rho(1)} & \text { p real } \\
L_{\mathbf{R}}(s)^{n^{+}} L_{\mathbf{R}}(s+1)^{n^{-}} & \text {p real }
\end{array},\right.
$$

where

$$
L_{\mathbf{C}}(s)=2(2 \pi)^{-s} \Gamma(s), \quad L_{\mathbf{R}}(s)=\pi^{-s / 2} \Gamma(s / 2)
$$

and for real p, we notice that $\mathrm{Frob}_{\mathfrak{p}}$ is of order 2, so we get an eigenspace decomposition $V=V^{+} \oplus V^{-}$, and we put $n^{+}=\operatorname{dim} V^{+}$and $n^{-}=\operatorname{dim} V^{-} . \operatorname{Set} \mathcal{L}_{\infty}(L / K, \rho, s)=\prod_{p \mid \infty} \mathcal{L}_{p}(L / K, \rho, s)$. Then there esists a certain constant $c(L / K, \rho)$, such that the function

$$
\Lambda(L / K, \rho, s):=c(L / K, \rho)^{s / 2} \mathcal{L}_{\infty}(L / K, \rho, s) \mathcal{L}(L / K, \rho, s)
$$

meromorphically continues to all of \mathbf{C} via the functional equation

$$
\Lambda(L / K, \rho, s)=W(\rho) \Lambda(L / K, \bar{\rho}, 1-s)
$$

where $\bar{\rho}$ is the the composition of ρ with complex conjugation and $W(\rho) \in \mathbf{C}^{\times}$has absolute value 1 .
We do not prove this, but remark that the proof first establishes the result in the case that ρ is onedimensional using the correspondence with Hecke characters alluded to above (there is a good theory in this case), and then uses the properties of the L-functions above and the Brauer Theorem (every character of a finite group G is a \mathbf{Z}-linear combination of one-dimensional characters induced from subgroups of G) to handle the general case.

7 Chebotarev Density Theorem

Proposition 7.1. Let L / K be a galois extension of number fields. Then

$$
\zeta_{L}(s)=\zeta_{K}(s) \prod_{\chi \neq 1} \mathcal{L}(L / K, \chi, s)^{\chi(1)}
$$

where the product ranges over all nontrivial irreducible characters of $\operatorname{Gal}(L / K)$.
Proof. This follows from property 3 of the Artin L-functions, after observing that for a tower of fields $E \supset L \supset K$ with $G=\operatorname{Gal}(E / K)$ and $H=\operatorname{Gal}(E / L)$, the character of the induced representation $\operatorname{Ind}_{H}^{G}$ id is $\sum_{\chi} \chi(1) \chi$, the sum being over all irreducible characters of G.
Corollary 7.2. For nontrivial χ, we have $\mathcal{L}(L / K, \chi, 1) \neq 0$.
Proof. One shows that $\mathcal{L}(L / K, \chi, s)$ does not have a pole at $s=1$ when $\chi \neq 1$, and then that both ζ_{K} and ζ_{L} have simple poles at $s=1$.

Proposition 7.3. Let K be a number field, and m a modulus. Let $H_{m} \subseteq I_{K}^{m}$ be a subgroup containing $K_{m, 1}$ (i.e. a subgroup of C_{m}) of index $h_{m}=\left[I_{K}^{m}: H_{m}\right]$. Then for any ideal class κ in I_{K}^{m} / H_{m}, the set of prime ideals in κ has dirichlet density $1 / h_{m}$.

Proof. Let L be the ray class field of conductor m. Then the Artin L function $\mathcal{L}(L / K, \chi, s)$ differs from the Hecke L-series

$$
L(s, \chi):=\prod_{p} \frac{1}{1-\chi(p) N_{K / \mathbf{Q}}(p)^{-s}}
$$

(where χ is a character of I_{K}^{m} via the surjection $I_{K}^{m} \rightarrow G$) by finitely many factors that are nonzero at 1 , so $L(1, \chi) \neq 0$. One uses this and the asymptotic relation

$$
\log L(s, \chi) \sim \sum_{\kappa \in I_{K}^{m} \cdot K_{m, 1}} \sum_{p \in \kappa} \frac{\chi(p)}{N_{K / \mathbf{Q}}(p)^{s}}
$$

with the character orthogonality relations to complete the proof; it is a direct generalization of the proof of Dirichlet's Theorem on primes in arithmetic progression.

Observe that as a corollary, we obtain Dirichlet's Theorem by letting $L / K=\mathbf{Q}\left(\zeta_{m} / \zeta\right)$ so G is $(\mathbf{Z} / m \mathbf{Z})^{\times} \simeq$ $I_{\mathbf{Q}}^{m \infty} / K_{m \infty, 1}$ and $h_{m}=[L: K]=\varphi(m)$.
Theorem 7.4. Let L / K be a galois extension with galois group G. For each conjugacy class c of G, let $S(s)$ denote the set of unramified primes $p \in \mathcal{O}_{K}$ whose image under the map $I_{K} \rightarrow G$ given by $p \mapsto \operatorname{Frob}_{p}$ is c (recall that Frob_{p} is the conjugacy class of all $\mathrm{Frob}_{\mathfrak{p}}$ with $\mathfrak{p} \in \operatorname{Spec}_{\mathcal{O}_{L}}$ lying over p). Then $S(c)$ has Dirichlet density $\# c / \# G$.

